Biological activities and phenolic content of endemic Helichrysum artvinense P.H. Davis et Kupicha (Asteraceae)
Year 2025,
Volume: 12 Issue: 1, 97 - 108
Tuba Acet
,
Kadriye Özcan
,
Nursen Aksu Kalmuk
Abstract
Species from the Asteraceae family have been extensively utilized in traditional medicine and as food sources for centuries. They also exhibit important biological activities attributed to their diverse array of phytochemical compounds. This research aimed to determine total phenolic and flavonoid contents of ethanol (EtOH) and methanol (MeOH) extracts of endemic Helichrysum artvinense and to reveal its antioxidant, antimicrobial enzyme inhibitory (α-glucosidase, α-amylase, and tyrosinase) and DNA protective activities. In addition, phenolic compound analyses were conducted using high-performance liquid chromatography (HPLC), establishing a correlation with the aforementioned biological activities. Based on the obtained data, the ethanol (EtOH) extract of the plant demonstrated greater prominence in terms of the screened biological activities. This extract was found to contain significant phenolic components, including epicatechin, chlorogenic acid, and luteolin. Consequently, it appears that the plant has the potential to serve as a natural alternative in both food and pharmacological applications. However, further studies to elucidate the mechanisms underlying the observed biological activities would be beneficial for the product development phase.
Supporting Institution
Gümüşhane University, Scientific Research Projects Coordination Office
Project Number
22.F5119.01.03
References
- Acet, T., Ozcan, K., & Zengin, G. (2020). An assessment of phenolic profiles, fatty acid compositions, and biological activities of two Helichrysum species: H. plicatum and H. chionophilum. Journal of Food Biochemistry, 44, e13128. https://doi.org/10.1111/jfbc.13128
- Aguilera, Y., Martin-Cabrejas, M.A., & de Mejia, E.G. (2016). Phenolic compounds in fruits and beverages consumed as part of the Mediterranean diet: Their role in prevention of chronic diseases. Phytochemistry Reviews, 15, 405-423. https://doi.org/10.1007/s11101-015-9443-z
- Albayrak, S., Aksoy, A., Sagdic, O., & Hamzaoglu, E. (2010). Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chemistry, 119(1), 114-122. https://doi.org/10.1016/j.foodchem.2009.06.003
- Annadurai, P., Annadurai, V., Yongkun, M., Pugazhendhi, A., & Dhandayuthapani, K., (2021). Phytochemical composition antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochemistry, 100, 107 116. https://doi.org/10.1016/j.procbio.2020.09.031
- Anwar, M.M. (2022). Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease. Cell Biochemistry Function, 40, 17 27. https://doi.org/10.1002/cbf.3673
- Aslan, M., Orhan, D.D., Orhan, N., Sezik, E., & Yesilada, E. (2007). In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 109, 54 59. https://doi.org/10.1016/j.jep.2006.07.001
- Birsan, R.I., Wilde, P., Waldron, K.W., & Rai, D.K. (2021). Anticholinesterase activities of different solvent extracts of brewer’s spent grain, Foods, 10, 930. https://doi.org/10.3390/foods10050930
- Bozkir, B., Acet, T., & Özcan, K. (2022). Investigation of the effects of different extraction methods on some biological activities of Dactylorhiza romana subsp. georgica (Klinge) Soó ex Renz & Taubenheim. South African Journal of Botany, 149, 347 354. https://doi.org/10.1016/j.sajb.2022.06.017
- Brenner, M., & Hearing, V.J. (2008). The protective role of melanin against UV damage in human skin. Photochemisty Photobiology, 84, 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
- Çelik Altunoglu, Y., Can, T.H., Tufekci, E.F., Altunoglu, B.D., Baloglu, M.C., Llorent-Martínez, E.J., & Zengin, G., (2022). Comprehensive approaches on chemical composition and biological properties of Daphne pontica L. extracts. Plant Biosyst. 156(1), 116-129. https://doi.org/10.1080/11263504.2020.1837282
- Chiasson, J.-L., Josse, R.G., Gomis, R., Hanefeld, M., Karasik, A., Laakso, M., & Group, S.-N.T.R. (2002). Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. The Lancet, 359(9323), 2072-2077. https://doi.org/10.1016/S0140-6736(02)08905-5
- CLSI. (2017). Performance standards for antimicrobial susceptibility testing; 27th informational supplement. CLSI/NCCLS (27th ed). Wayne, PA, USA: Clinical and Laboratory Standards Institute.
- Davis, P.H. (1975). Flora of Turkey and the East Aegean Islands. Vol. 5. Edinburgh: Edinburgh University Press.
- Ebrahimzadeh, M.A., & Tavassoli, A. (2015). Antioxidant properties of Helichrysum pseudoplicatum Nab. Pharmaceutical and Biomedical Research, 1, 37 43. https://doi.org/10.18869/acadpub.pbr.1.1.37
- Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., & Li, H.B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129, 345-350. https://doi.org/10.1016/j.foodchem.2011.04.079
- Gan, M., Zhang, Y., Yan, G., Wang, Y., Lu, G., Wu, B., Chen, W., & Zhou, W. (2024). Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients. Annals of Clinical Microbiology, and Antimicrobials, 23, 33. https://doi.org/10.1186/s12941-024-00690-7
- Giri, L., Belwal, T., Bahukhandi, A., Suyal, R., Bhatt, I.D., Rawal, R.S., & Nandi, S.K. (2017). Oxidative DNA damage protective activity and antioxidant potential of Ashtvarga species growing in the Indian Himalayan Region. Industrial Crops and Products, 102, 173-179. https://doi.org/10.1016/j.indcrop.2017.03.023
- Gonçalves, S., Moreira, E., Grosso, C., Andrade, P.B., Valentão, P., & Romano, A. (2017). Phenolic profile, antioxidant activity and enzyme inhibitoryactivities of extracts from aromatic plants used in Mediterranean diet. Journal of Food Science and Technology, 54, 219-227. https://doi.org/10.1007/s13197-016-2453-z
- Gouveia-Figueira, S., Gouveia, C., Carvalho, M., Rodrigues, A., Nording, M., & Castilho, P. (2014). Antioxidant capacity, cytotoxicity and an-timycobacterial activity of Madeira archipelago endemic Helichrysum dietary and medicinal plants. Antioxidants, 3, 713-729. https://doi.org/10.3390/antiox3040713
- Hu, X.-J., Wang, X.-B., & Kong, L.-Y. (2013). α-Glucosidase inhibitors via green pathway: Biotransformation for bicoumarins catalyzed by Momordica charantia peroxidase. Journal of Agricultural and Food Chemistry, 61, 1501-1508. https://doi.org/10.1021/jf304384b
- Hwang, C.K., Han, P.V., Zabetian, A., Ali, M.K., & Narayan, K.V. (2012). Rural diabetes prevalence quintuples over twenty-five years in lowand middle-income countries: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 96, 271-285. https://doi.org/10.1016/j.diabres.2011.12.001
- Kirby, A.J., & Schmidt, R.J. (1997). The antioxidant activity of Chinese herbs for eczema and of placebo herbs I. Journal of Ethnopharmacology, 56, 103 108. https://doi.org/10.1016/S0378-8741(97)01510-9
- Lahlou, R.A., Carvalho, F., Pereira, M.J., Lopes, J., Silva, L.R. (2024). Overview of ethnobotanical–pharmacological studies carried out on medicinal plants from the Serra da Estrela Natural Park: Focus on their antidiabetic potential. Pharmaceutics, 16(4), 454. https://doi.org/10.3390/pharmaceutics16040454
- Lasano, N.F., Hamid, A.H., Karim, R., Dek, M.S.P., Shukri, R., & Shazini Ramli, N. (2019). Nutritional composition, anti-diabetic properties and identification of active compounds using UHPLC-ESI-orbitrap-MS/ MS in Mangifera odorata L. peel and seed kernel. Molecules, 24, 320. https://doi.org/10.3390/molec ules2 4020320
- Lee, H.P., Zhu, X., Casadesus, G., Castellani, R.J., Nunomura, A., Smith, M.A., & Perry, G. (2010). Antioxidant approaches for the treat-ment of Alzheimer’s disease. Expert Review of Neurotherapeutics, 10, 1201-1208. https://doi.org/10.1586/ern.10.74
- Maritim, A.C., Sanders, R.A., & Watkins, J.B. (2003). Diabetes, oxida-tive stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17, 24-38. https://doi.org/10.1002/jbt.10058
- Mattila, P., & Hellström, J. (2007). Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis, 20, 152 160. https://doi.org/10.1016/j.jfca.2006.05.007
- Ogunyemi, O.M., Gyebi, G.A, Saheed, A., Paul, J., Nwaneri-Chidozie, V., Olorundare, O., … Olaiya, C.O. (2022). Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Frontiers in Molecular Biosciences, 9, 1-19. https://doi.org/10.3389/fmolb.2022.866719
- Özcan, K., & Acet, T. (2018). In vitro antioxidant and antimicrobial activities of the five different solvent extracts of Centaurea pulcherrima var. freynii from Turkey. Fresenius Environmental Bulletin, 27, 4047-4051.
- Pakpour, A.H., Griffiths, M.D., & Lin, C. (2021). Assessing Psychological Response to the COVID-19:The Fear of COVID-19 Scale and the COVID Stress Scales. International Journal of Mental Health Addiction, 19, 2407-2410. https://doi.org/10.1007/s11469-020-00334-9
- Pari, L., & Srinivasan, S. (2010). Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide induced diabetic rats. Biomedicine & Pharmacotherapy, 64, 477 481. https://doi.org/10.1016/j.biopha.2010.02.001
- Petersen, M., (2013). Rosmarinic acid: New aspects. Phytochemistry Reviews, 12, 207-227. https://doi.org/10.1007/s11101-013-9282-8
- Pillaiyar, T., Manickam, M., & Jung, S.H. (2017). Recent development of signaling pathways inhibitors of melanogenesis. Cell Signalling, 40, 99 115. https://doi.org/10.1016/j.cellsig.2017.09.004
- Popoola, O., Marnewick, J., Rautenbach, F., Iwuoha, E., & Hussein, A. (2015). Acylphloroglucinol derivatives from the South African Helichrysum niveum and their biological activities. Molecules, 20, 17309 17324. https://doi.org/10.3390/molecules200917309
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
- Sala, A., Recio, M.d.C., Giner, R.M., Máñez, S., Tournier, H., Schinella, G., & Ríos, J.L. (2002). Anti-inflammatory and antioxidant properties of Helichrysum italicum. Journal of Pharmacy and Pharmacology, 54(3), 365-371. https://doi.org/10.1211/0022357021778600
- Sarıkürkçü, C., & Zengin, G., (2020). Polyphenol profile and biological activity comparisons of different parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology (Basel). 9, 1-15. https://doi.org/10.3390/biology9080231
- Sezik, E., Yeşilada, E., Honda, G.,Takaishi, Y., Takeda, Y., & Tanaka, T., (2001). Traditional medicine in Turkey X. Folk medicine in Central Anatolia, Journal of Ethnopharmacology, 75(2-3), 95-115. https://doi.org/10.1016/S0378-8741(00)00399-8
- Sheng, Y.Y., Xiang, J., Lu, J.L., Ye, J.H., Chen, Z., Zhao, J., & Zheng, X. (2022). Protective effects of gallocatechin gallate against ultraviolet B induced skin damages in hairless mice. Scientific Reports, 12, 1-11. https://doi.org/10.1038/s41598-022-05305-9
- Spínola, V., & Castilho, P.C., (2017). Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). Phytochemistry, 143, 29-35. https://doi.org/10.1016/j.phytochem.2017.07.006
- Tepe, B., Sokmen, M., Akpulat, H. A., & Sokmen, A. (2005). In vitro anti-oxidant activities of the methanol extracts of four Helichrysum species from Turkey. Food Chemistry, 90, 685-689. https://doi.org/10.1016/j.foodchem.2004.04.030
- Tsao, R., & Deng, Z. (2004). Separation procedures for naturally occur-ring antioxidant phytochemicals. Journal of Chromatography B, 812, 85 99. https://doi.org/10.1016/j.jchromb.2004.09.028
- Zengin, G., Zheleva-Dimitrova, D., Gevrenova, R., Nedialkov, P., Mocan, A., Ćirić, A., & Mahomoodally, M.F. (2018). Identification of phenolic components via LC–MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. Journal of Pharmaceutical and Biomedical Analysis, 149, 436-441. https://doi.org/10.1016/j.jpba.2017.11.045
- Zengin, G., Cvetanović, A., Gašić, U., Tešić, Z., Stupar, A., Bulut, G., … Mahomoodally, M.F. (2020). A comparative exploration of the phytochemical profiles and bio-pharmaceutical potential of Helichrysum stoechas subsp. barrelieri extracts obtained via five extraction techniques. Process Biochemistry, 91, 113 125. https://doi.org/10.1016/j.procbio.2019.12.002
Biological activities and phenolic content of endemic Helichrysum artvinense P.H. Davis et Kupicha (Asteraceae)
Year 2025,
Volume: 12 Issue: 1, 97 - 108
Tuba Acet
,
Kadriye Özcan
,
Nursen Aksu Kalmuk
Abstract
Species from the Asteraceae family have been extensively utilized in traditional medicine and as food sources for centuries. They also exhibit important biological activities attributed to their diverse array of phytochemical compounds. This research aimed to determine total phenolic and flavonoid contents of ethanol (EtOH) and methanol (MeOH) extracts of endemic Helichrysum artvinense and to reveal its antioxidant, antimicrobial enzyme inhibitory (α-glucosidase, α-amylase, and tyrosinase) and DNA protective activities. In addition, phenolic compound analyses were conducted using high-performance liquid chromatography (HPLC), establishing a correlation with the aforementioned biological activities. Based on the obtained data, the ethanol (EtOH) extract of the plant demonstrated greater prominence in terms of the screened biological activities. This extract was found to contain significant phenolic components, including epicatechin, chlorogenic acid, and luteolin. Consequently, it appears that the plant has the potential to serve as a natural alternative in both food and pharmacological applications. However, further studies to elucidate the mechanisms underlying the observed biological activities would be beneficial for the product development phase.
Project Number
22.F5119.01.03
References
- Acet, T., Ozcan, K., & Zengin, G. (2020). An assessment of phenolic profiles, fatty acid compositions, and biological activities of two Helichrysum species: H. plicatum and H. chionophilum. Journal of Food Biochemistry, 44, e13128. https://doi.org/10.1111/jfbc.13128
- Aguilera, Y., Martin-Cabrejas, M.A., & de Mejia, E.G. (2016). Phenolic compounds in fruits and beverages consumed as part of the Mediterranean diet: Their role in prevention of chronic diseases. Phytochemistry Reviews, 15, 405-423. https://doi.org/10.1007/s11101-015-9443-z
- Albayrak, S., Aksoy, A., Sagdic, O., & Hamzaoglu, E. (2010). Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chemistry, 119(1), 114-122. https://doi.org/10.1016/j.foodchem.2009.06.003
- Annadurai, P., Annadurai, V., Yongkun, M., Pugazhendhi, A., & Dhandayuthapani, K., (2021). Phytochemical composition antioxidant and antimicrobial activities of Plecospermum spinosum Trecul. Process Biochemistry, 100, 107 116. https://doi.org/10.1016/j.procbio.2020.09.031
- Anwar, M.M. (2022). Oxidative stress-A direct bridge to central nervous system homeostatic dysfunction and Alzheimer’s disease. Cell Biochemistry Function, 40, 17 27. https://doi.org/10.1002/cbf.3673
- Aslan, M., Orhan, D.D., Orhan, N., Sezik, E., & Yesilada, E. (2007). In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced diabetic rats. Journal of Ethnopharmacology, 109, 54 59. https://doi.org/10.1016/j.jep.2006.07.001
- Birsan, R.I., Wilde, P., Waldron, K.W., & Rai, D.K. (2021). Anticholinesterase activities of different solvent extracts of brewer’s spent grain, Foods, 10, 930. https://doi.org/10.3390/foods10050930
- Bozkir, B., Acet, T., & Özcan, K. (2022). Investigation of the effects of different extraction methods on some biological activities of Dactylorhiza romana subsp. georgica (Klinge) Soó ex Renz & Taubenheim. South African Journal of Botany, 149, 347 354. https://doi.org/10.1016/j.sajb.2022.06.017
- Brenner, M., & Hearing, V.J. (2008). The protective role of melanin against UV damage in human skin. Photochemisty Photobiology, 84, 539-549. https://doi.org/10.1111/j.1751-1097.2007.00226.x
- Çelik Altunoglu, Y., Can, T.H., Tufekci, E.F., Altunoglu, B.D., Baloglu, M.C., Llorent-Martínez, E.J., & Zengin, G., (2022). Comprehensive approaches on chemical composition and biological properties of Daphne pontica L. extracts. Plant Biosyst. 156(1), 116-129. https://doi.org/10.1080/11263504.2020.1837282
- Chiasson, J.-L., Josse, R.G., Gomis, R., Hanefeld, M., Karasik, A., Laakso, M., & Group, S.-N.T.R. (2002). Acarbose for prevention of type 2 diabetes mellitus: The STOP-NIDDM randomised trial. The Lancet, 359(9323), 2072-2077. https://doi.org/10.1016/S0140-6736(02)08905-5
- CLSI. (2017). Performance standards for antimicrobial susceptibility testing; 27th informational supplement. CLSI/NCCLS (27th ed). Wayne, PA, USA: Clinical and Laboratory Standards Institute.
- Davis, P.H. (1975). Flora of Turkey and the East Aegean Islands. Vol. 5. Edinburgh: Edinburgh University Press.
- Ebrahimzadeh, M.A., & Tavassoli, A. (2015). Antioxidant properties of Helichrysum pseudoplicatum Nab. Pharmaceutical and Biomedical Research, 1, 37 43. https://doi.org/10.18869/acadpub.pbr.1.1.37
- Fu, L., Xu, B.T., Xu, X.R., Gan, R.Y., Zhang, Y., Xia, E.Q., & Li, H.B. (2011). Antioxidant capacities and total phenolic contents of 62 fruits. Food Chemistry, 129, 345-350. https://doi.org/10.1016/j.foodchem.2011.04.079
- Gan, M., Zhang, Y., Yan, G., Wang, Y., Lu, G., Wu, B., Chen, W., & Zhou, W. (2024). Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients. Annals of Clinical Microbiology, and Antimicrobials, 23, 33. https://doi.org/10.1186/s12941-024-00690-7
- Giri, L., Belwal, T., Bahukhandi, A., Suyal, R., Bhatt, I.D., Rawal, R.S., & Nandi, S.K. (2017). Oxidative DNA damage protective activity and antioxidant potential of Ashtvarga species growing in the Indian Himalayan Region. Industrial Crops and Products, 102, 173-179. https://doi.org/10.1016/j.indcrop.2017.03.023
- Gonçalves, S., Moreira, E., Grosso, C., Andrade, P.B., Valentão, P., & Romano, A. (2017). Phenolic profile, antioxidant activity and enzyme inhibitoryactivities of extracts from aromatic plants used in Mediterranean diet. Journal of Food Science and Technology, 54, 219-227. https://doi.org/10.1007/s13197-016-2453-z
- Gouveia-Figueira, S., Gouveia, C., Carvalho, M., Rodrigues, A., Nording, M., & Castilho, P. (2014). Antioxidant capacity, cytotoxicity and an-timycobacterial activity of Madeira archipelago endemic Helichrysum dietary and medicinal plants. Antioxidants, 3, 713-729. https://doi.org/10.3390/antiox3040713
- Hu, X.-J., Wang, X.-B., & Kong, L.-Y. (2013). α-Glucosidase inhibitors via green pathway: Biotransformation for bicoumarins catalyzed by Momordica charantia peroxidase. Journal of Agricultural and Food Chemistry, 61, 1501-1508. https://doi.org/10.1021/jf304384b
- Hwang, C.K., Han, P.V., Zabetian, A., Ali, M.K., & Narayan, K.V. (2012). Rural diabetes prevalence quintuples over twenty-five years in lowand middle-income countries: A systematic review and meta-analysis. Diabetes Research and Clinical Practice, 96, 271-285. https://doi.org/10.1016/j.diabres.2011.12.001
- Kirby, A.J., & Schmidt, R.J. (1997). The antioxidant activity of Chinese herbs for eczema and of placebo herbs I. Journal of Ethnopharmacology, 56, 103 108. https://doi.org/10.1016/S0378-8741(97)01510-9
- Lahlou, R.A., Carvalho, F., Pereira, M.J., Lopes, J., Silva, L.R. (2024). Overview of ethnobotanical–pharmacological studies carried out on medicinal plants from the Serra da Estrela Natural Park: Focus on their antidiabetic potential. Pharmaceutics, 16(4), 454. https://doi.org/10.3390/pharmaceutics16040454
- Lasano, N.F., Hamid, A.H., Karim, R., Dek, M.S.P., Shukri, R., & Shazini Ramli, N. (2019). Nutritional composition, anti-diabetic properties and identification of active compounds using UHPLC-ESI-orbitrap-MS/ MS in Mangifera odorata L. peel and seed kernel. Molecules, 24, 320. https://doi.org/10.3390/molec ules2 4020320
- Lee, H.P., Zhu, X., Casadesus, G., Castellani, R.J., Nunomura, A., Smith, M.A., & Perry, G. (2010). Antioxidant approaches for the treat-ment of Alzheimer’s disease. Expert Review of Neurotherapeutics, 10, 1201-1208. https://doi.org/10.1586/ern.10.74
- Maritim, A.C., Sanders, R.A., & Watkins, J.B. (2003). Diabetes, oxida-tive stress, and antioxidants: A review. Journal of Biochemical and Molecular Toxicology, 17, 24-38. https://doi.org/10.1002/jbt.10058
- Mattila, P., & Hellström, J. (2007). Phenolic acids in potatoes, vegetables, and some of their products. Journal of Food Composition and Analysis, 20, 152 160. https://doi.org/10.1016/j.jfca.2006.05.007
- Ogunyemi, O.M., Gyebi, G.A, Saheed, A., Paul, J., Nwaneri-Chidozie, V., Olorundare, O., … Olaiya, C.O. (2022). Inhibition mechanism of alpha-amylase, a diabetes target, by a steroidal pregnane and pregnane glycosides derived from Gongronema latifolium Benth. Frontiers in Molecular Biosciences, 9, 1-19. https://doi.org/10.3389/fmolb.2022.866719
- Özcan, K., & Acet, T. (2018). In vitro antioxidant and antimicrobial activities of the five different solvent extracts of Centaurea pulcherrima var. freynii from Turkey. Fresenius Environmental Bulletin, 27, 4047-4051.
- Pakpour, A.H., Griffiths, M.D., & Lin, C. (2021). Assessing Psychological Response to the COVID-19:The Fear of COVID-19 Scale and the COVID Stress Scales. International Journal of Mental Health Addiction, 19, 2407-2410. https://doi.org/10.1007/s11469-020-00334-9
- Pari, L., & Srinivasan, S. (2010). Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin-nicotinamide induced diabetic rats. Biomedicine & Pharmacotherapy, 64, 477 481. https://doi.org/10.1016/j.biopha.2010.02.001
- Petersen, M., (2013). Rosmarinic acid: New aspects. Phytochemistry Reviews, 12, 207-227. https://doi.org/10.1007/s11101-013-9282-8
- Pillaiyar, T., Manickam, M., & Jung, S.H. (2017). Recent development of signaling pathways inhibitors of melanogenesis. Cell Signalling, 40, 99 115. https://doi.org/10.1016/j.cellsig.2017.09.004
- Popoola, O., Marnewick, J., Rautenbach, F., Iwuoha, E., & Hussein, A. (2015). Acylphloroglucinol derivatives from the South African Helichrysum niveum and their biological activities. Molecules, 20, 17309 17324. https://doi.org/10.3390/molecules200917309
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
- Sala, A., Recio, M.d.C., Giner, R.M., Máñez, S., Tournier, H., Schinella, G., & Ríos, J.L. (2002). Anti-inflammatory and antioxidant properties of Helichrysum italicum. Journal of Pharmacy and Pharmacology, 54(3), 365-371. https://doi.org/10.1211/0022357021778600
- Sarıkürkçü, C., & Zengin, G., (2020). Polyphenol profile and biological activity comparisons of different parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology (Basel). 9, 1-15. https://doi.org/10.3390/biology9080231
- Sezik, E., Yeşilada, E., Honda, G.,Takaishi, Y., Takeda, Y., & Tanaka, T., (2001). Traditional medicine in Turkey X. Folk medicine in Central Anatolia, Journal of Ethnopharmacology, 75(2-3), 95-115. https://doi.org/10.1016/S0378-8741(00)00399-8
- Sheng, Y.Y., Xiang, J., Lu, J.L., Ye, J.H., Chen, Z., Zhao, J., & Zheng, X. (2022). Protective effects of gallocatechin gallate against ultraviolet B induced skin damages in hairless mice. Scientific Reports, 12, 1-11. https://doi.org/10.1038/s41598-022-05305-9
- Spínola, V., & Castilho, P.C., (2017). Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (in vitro). Phytochemistry, 143, 29-35. https://doi.org/10.1016/j.phytochem.2017.07.006
- Tepe, B., Sokmen, M., Akpulat, H. A., & Sokmen, A. (2005). In vitro anti-oxidant activities of the methanol extracts of four Helichrysum species from Turkey. Food Chemistry, 90, 685-689. https://doi.org/10.1016/j.foodchem.2004.04.030
- Tsao, R., & Deng, Z. (2004). Separation procedures for naturally occur-ring antioxidant phytochemicals. Journal of Chromatography B, 812, 85 99. https://doi.org/10.1016/j.jchromb.2004.09.028
- Zengin, G., Zheleva-Dimitrova, D., Gevrenova, R., Nedialkov, P., Mocan, A., Ćirić, A., & Mahomoodally, M.F. (2018). Identification of phenolic components via LC–MS analysis and biological activities of two Centaurea species: C. drabifolia subsp. drabifolia and C. lycopifolia. Journal of Pharmaceutical and Biomedical Analysis, 149, 436-441. https://doi.org/10.1016/j.jpba.2017.11.045
- Zengin, G., Cvetanović, A., Gašić, U., Tešić, Z., Stupar, A., Bulut, G., … Mahomoodally, M.F. (2020). A comparative exploration of the phytochemical profiles and bio-pharmaceutical potential of Helichrysum stoechas subsp. barrelieri extracts obtained via five extraction techniques. Process Biochemistry, 91, 113 125. https://doi.org/10.1016/j.procbio.2019.12.002