Research Article
BibTex RIS Cite

Effect of ZnO nano priming on germination and root length of soybean seeds (Glycine max L.)

Year 2025, Volume: 12 Issue: 1, 204 - 215

Abstract

Nano-priming is a pioneering method of treating seeds that improves seed germination, growth, and yield by imparting resilience to several plant stressors. Zinc oxide (ZnO) is a nanomaterial with a specific surface area, high pore volume, low toxicity, and an extended lifetime, and used in nano-priming. This study aimed to determine the effect of ZnO nanoparticles (NPs) on seed germination and root length in determining the optimum concentration of ZnO-NPs for soya plants. The transmission of electron microscopy (TEM) and zeta potential measurements were used to characterize ZnO-NPs. Soya seeds were treated with different concentrations of ZnO-NPs (0, 250, 500, 1000 and 2000 mgL-1) for 24 h. to determine the optimum concentration of ZnO-NPs for selected variants. After priming, the germination percentage and root length of each treatment were measured. The effect of ZnO nanoparticles (in soya plants was investigated by comparing them with seeds germinated in a control (hydro-priming) medium. The investigation demonstrated that the high concentration of ZnO NPs had an adverse impact on both seed germination and root length. Based on this, it was suggested that studies should be conducted including different concentrations of ZnO nanoparticles, which are thought to have a complex structure, to understand the mechanism of action, to find the appropriate concentration for soybean plants, and to increase seed germination.

Ethical Statement

Canakkale Onsekiz Mart University/ Postgraduate Education Institute Ethics Committee Scientific Research Ethics Committee, E-84026528-050.01.04-2200303364.

Supporting Institution

This study is a part of Burcu AKBAY's master's thesis supported by Çanakkale Onsekiz Mart University BAP with approval date 15.05.2022.

Project Number

FYL2022-3972

Thanks

We would like to thank Assoc. Prof. Dr. Volkan Eskizeybek and Research Assistant Hakan Güven for providing the laboratory conditions for this study and Dr. Lecturer Bahri İzci for helping with statistical analyses. We would like to thank Prof. Dr Bahri İzci for his help in statistical analyses.

References

  • Açıkgöz, N., & Gökçöl, İ.E. (2004). TOTEMSTAT statistical packet programme: Assessment of biological research on the computer. Aegean University. ISBN: 975-483-607-8.
  • Alobaiddy, M., & Zorer Çelebi, Ş. (2022). Effect of active dry yeast and nano iron fertiliser on some yield and quality characteristics of maize (Zea mays L.) plants grown in alkaline soil [Unpublished Doctoral dissertation]. Van Yüzüncü Yıl University.
  • Ateş M. (2018). Measurement and examination techniques of nanoparticles. Turkish Journal of Scientific Review, 11(1), 63.
  • Burman, U., Saini, M., & Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry, 95(4), 605-612. https://doi.org/10.1080/02772248.2013.803796
  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302, 1-17. https://doi.org/10.1007/s11104-007-9466-3
  • Chikkanna, M.M., Neelagund, S.E., & Rajashekarappa, K.K. (2019). Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Applied Sciences, 1(1), 117. https://doi.org/10.1007/s42452-018-0095-7
  • Das, S., Mukherjee, A., Sengupta, G., & Singh, V.K. (2020). Overview of nanomaterials synthesis methods, characterisation techniques and effect on seed germination: In Nano- Materials as Photocatalysts for Degradation of Environmental Pollutants (pp. 371-401). Elsevier. https://doi.org/10.1016/B978-0-12-818598-8.00018-3
  • de la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2013). Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry 4th, 85(12), 2161-2174. https://doi.org/10.1351/pac-con-12-09-05
  • El-Saadony, M.T., Saad, A.M., Najjar, A.A., Alzahrani, S.O., Alkhatib, F.M., Salem, E., … Hassan, M.A.A. (2021). The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 28(8), 4461-4471. https://doi.org/10.1016/j.sjbs.2021.04.043
  • Faizan, M., Faraz, A., Mir, A.R., Hayat, S. (2020). Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 40, 101-115. https://doi.org/10.1007/s00344-019-10059-2
  • Gaafar, R., Diab, R., Halawa, M., Elshanshory, A., El-Shaer, A., & Hamouda, M. (2020). Role of zinc oxide nanoparticles in ameliorating salt tolerance in soybean. Egyptian Journal of Botany, 60(3), 733-747. https://doi.org/10.21608/ejbo.2020.26415.1475
  • García-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Díaz Barriga-Castro, E., Ruiz-Torres, NA, ... & Niño-Medina, G. (2018). Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10), 215. https://doi.org/10.3390/agronomy8100215
  • Gupta, N., Rai, S.K., Kumar, R., Singh, P.M., Chaubey, T., Singh, V., & Behera, T.K. (2024). Seed priming with engineered nanomaterials for mitigating abiotic stress in plants: In Nanotechnology for abiotic stress tolerance and management in crop plants (pp. 229-247). Academic Press. https://doi.org/10.1016/B978-0-443-18500-7.00015-6
  • Hassanisaadi, M., Barani, M., Rahdar, A., Heidary, M., Thysiadou, A., & Kyzas, G.Z. (2022). Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regulation, 97(2), 375 418. https://doi.org/10.1007/s10725-021-00782-w
  • Hidayat Chai, M.H., Amir, N., Yahya, N., & Saaid, I.M. (2018). Characterization and colloidal stability of surface modified zinc oxide nanoparticle. In Journal of Physics: Conference Series, International conference on fundamental & applied sciences, a conference of world engineering, science & technology congress , Kuala Lumpur, Malaysia ,13-15 August, (Vol. 1123, p. 012007). IOP Publishing. https://doi.org/10.1088/1742-6596/1123/1/012007
  • Hoe, P.T., Linh, T.M., Van, N.T., Buu, N.Q., Mai, N.C., Ban, N.K., & Chau, N.H. (2018). Effects of nanoparticles zinc oxide and nano cobalt on the germination of soybean (Glycine max (L.) Merr). Vietnam Journal of Biotechnology, 16(3), 501 508. https://doi.org/10.15625/1811-4989/16/3/13472
  • Hunter, R.J. (1981). Zeta Potential in Colloid Science: Principles and applications. Academic. Press. https://doi.org/10.1016/C2013-0-07389-6
  • Imtiaz, H., Shiraz, M., Mir, A.R., Siddiqui, H., & Hayat, S. (2023). Nano-priming techniques for plant physio-biochemistry and stress tolerance. Journal of Plant Growth Regulation, 42(11), 6870-6890. https://doi.org/10.1007/s00344-023-10981-6
  • Itroutwar, P.D., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K., & Subramanian, K.S. (2020). Seaweed-based biogenic ZnO nanoparticles for improving agro- morphological characteristics of rice (Oryza sativa L.). Journal of Plant Growth Regulation, 39, 717-728. https://doi.org/10.1007/s00344-019-10012-3
  • Johns, D.A., Cahill D. (2018). Effect of silicon dioxide nanoparticles on seed germination and growth of four different plant species [Msc dissertation, Deakin University]. Deakin University. https://hdl.handle.net/10536/DRO/DU:30132925
  • Khan, M.N., Fu, C., Li, J., Tao, Y., Li, Y., Hu, J., ... & Li, Z. (2022). Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere, 136911. https://doi.org/10.1016/j.chemosfer.2022.136911
  • Li, Y., Liang, L., Li, W., Ashraf, U., Ma, L., Tang, X., ... & Mo, Z. (2021). ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology, 19, 1-19. https://doi.org/10.1186/s12951-021-00820-9
  • López-Moreno, M.L., de la Rosa, G., Hernández-Viezcas, J.Á., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19), 7315 7320. https://doi.org/10.1021/es903891gopen_in_new
  • Mahajan, P., Dhoke, S.K., Khanna, A.S., & Tarafdar, J.C. (2011). Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Applied Biological Research, 13(2), 54-61.
  • Mahakham, W., Sarmah, A.K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesised silver nanoparticles. Scientific Reports, 7(1), 8263. https://doi.org/10.1038/s41598-017-08669-5
  • Mohamed, E., Harbi, H., & Aref, N. (2019). Radioprotective Efficacy of zinc oxide nanoparticles on ꝩ-ray-induced nuclear DNA damage in Vicia faba L. as evaluated by DNA bioassays. Journal of Radiation Research and Applied Sciences, 12(1), 423-436. https://doi.org/10.1080/16878507.2019.1690798
  • Montanha, G.S., Rodrigues, E.S., Marques, J.P.R., de Almeida, E., Colzato, M., & Pereira de Carvalho, H.W. (2020). Zinc nanocoated seeds: an alternative to boost soybean seed germination and seedling development. SN Applied Sciences, 2(5), 857. https://doi.org/10.1007/s42452-020-2630-6
  • Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., ... & Imran, M. (2018). Effect of zinc oxide nanoparticles on the growth and zn uptake in whea (Triticum aestivum L.) by see priming method. Digest Journal of Nanomaterials & Biostructures (djnb), 13(1).
  • Nemček, L., Šebesta, M., Urík, M., Bujdoš, M., Dobročka, E., & Vávra, I. (2020). Impact of bulk ZnO, ZnO nanoparticles and dissolved Zn on early growth stages of barley-a pot experiment. Plants, 9(10), 1365. https://doi.org/10.3390/plants9101365
  • Nile, S.H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M.A., Rebezov, M., ... Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 1-31. https://doi.org/10.1186/s12951-022-01423-8
  • Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  • Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905 927. https://doi.org/10.1080/01904167.2012.663443
  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
  • Rai-Kalal, P., & Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160, 341-351. https://doi.org/10.1016/j.plaphy.2021.01.032
  • Rajput, V.D., Minkina, T., Kumari, A., Harish Singh, V.K., Verma, K.K., Mandzhieva, S., … Keswani C. (2021). Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants, 10, 1221. https://doi.org/10.3390/plants10061221
  • Rameshraddy, G., Pavithra, J., Mahesh, S., Geetha, K.N., & Shankar, A.G. (2017). Seed priming and foliar spray with nano zinc improves stress adaptability and seed zinc content without compromising seed yield in ragi (Finger millet). International Journal of Pure and Applied Bioscience, 5(3), 251-258.http://dx.doi.org/10.18782/2320-7051.2906
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/
  • Santás-Miguel, V., Arias-Estévez, M., Rodríguez-Seijo, A., & Arenas-Lago, D. (2023). Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution, 122222. https://doi.org/10.1016/j.envpol.2023.122222
  • Sharma, D., Afzal, S., & Singh, N.K. (2021). Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 336, 64-75. https://doi.org/10.1016/j.jbiotec.2021.06.014
  • Sharma, P., Urfan, M., Anand, R., Sangral, M., Hakla, H.R., Sharma, S., & Bhagat, M. (2022). Green synthesis of zinc oxide nanoparticles using Eucalyptus lanceolata leaf litter: characterisation, antimicrobial and agricultural efficacy in maize. Physiology and Molecular Biology of Plants, 28(2), 363-381. https://doi.org/10.1007/s12298-022-01136-0
  • Srivastav, A., Ganjewala, D., Singhal, R.K., Rajput, V.D., Minkina, T., Voloshina, M., & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10(12), 2556. https://doi.org/10.3390/plants10122556
  • Sytar, O., Kumari, P., Yadav, S., Brestic, M., & Rastogi, A. (2019). Phytohormone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38, 739- 752. https://doi.org/10.1007/s00344-018-9886-8
  • Thounaojam, T.C., Meetei, T.T., Devi, Y.B., Panda, S.K., & Upadhyaya, H. (2021). Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science. Acta Physiologiae Plantarum, 43, 1-21. https://doi.org/10.1007/s11738-021-03307-0
  • Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root. Materials, 16(8), 3097. https://doi.org/10.3390/ma16083097
  • Yoon, S.J., Kwak, J.I., Lee, W.M., Holden, P.A., & An, Y.J. (2014). Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicology and Environmental Safety, 100, 131-137. https://doi.org/10.1016/j.ecoenv.2013.10.014
  • Youssef, M., & Elamawi, R. (2020). Evaluation of Phytotoxicity, Cytotoxicity, and Genotoxicity of ZnO Nanoparticles in Vicia faba. Environmental Science and Pollution Research, 27(16), 18972-18984. https://doi.org/10.1007/s11356-018-3250-1
  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L.R. (2020). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 738, 140240. https://doi.org/10.1016/j.scitotenv.2020.140240
  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L.R. (2022). Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics. Science of the Total Environment, 835, 155348. https://doi.org/10.1016/j.scitotenv.2022.155348
  • Zain, M., Ma, H., Chaudhary, S., Nuruzaman, M., Azeem, I., Mehmood, F., ... & Sun, C. (2023). Nanotechnology in precision agriculture: Advancing towards sustainable crop production. Plant Physiology and Biochemistry, 108244. https://doi.org/10.1016/j.plaphy.2023.108244
  • Zhang, R., Zhang, H., Tu, C., Hu, X., Li, L., Luo, Y., & Christie, P. (2015). Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research, 22, 11109-11117. https://doi.org/10.1007/s11356-015-4325-x

Effect of ZnO nano priming on germination and root length of soya (Glycine max L.) plant seeds

Year 2025, Volume: 12 Issue: 1, 204 - 215

Abstract

Nano-priming is a pioneering method of treating seeds that improves seed germination, growth, and yield by imparting resilience to several plant stressors. Zinc oxide (ZnO) is a nanomaterial with a specific surface area, high pore volume, low toxicity, and an extended lifetime, and used in nano-priming. This study aimed to determine the effect of ZnO nanoparticles (NPs) on seed germination and root length in determining the optimum concentration of ZnO-NPs for soya plants. The transmission of electron microscopy (TEM) and zeta potential measurements were used to characterize ZnO-NPs. Soya seeds were treated with different concentrations of ZnO-NPs (0, 250, 500, 1000 and 2000 mgL-1) for 24 h. to determine the optimum concentration of ZnO-NPs for selected variants. After priming, the germination percentage and root length of each treatment were measured. The effect of ZnO nanoparticles (in soya plants was investigated by comparing them with seeds germinated in a control (hydro-priming) medium. The investigation demonstrated that the high concentration of ZnO NPs had an adverse impact on both seed germination and root length. Based on this, it was suggested that studies should be conducted including different concentrations of ZnO nanoparticles, which are thought to have a complex structure, to understand the mechanism of action, to find the appropriate concentration for soybean plants, and to increase seed germination.

Ethical Statement

Canakkale Onsekiz Mart University/ Postgraduate Education Institute Ethics Committee Scientific Research Ethics Committee, E-84026528-050.01.04-2200303364.

Supporting Institution

This study is a part of Burcu AKBAY's master's thesis supported by Çanakkale Onsekiz Mart University BAP with approval date 15.05.2022.

Project Number

FYL2022-3972

Thanks

We would like to thank Assoc. Prof. Dr. Volkan Eskizeybek and Research Assistant Hakan Güven for providing the laboratory conditions for this study and Dr. Lecturer Bahri İzci for helping with statistical analyses. We would like to thank Prof. Dr Bahri İzci for his help in statistical analyses.

References

  • Açıkgöz, N., & Gökçöl, İ.E. (2004). TOTEMSTAT statistical packet programme: Assessment of biological research on the computer. Aegean University. ISBN: 975-483-607-8.
  • Alobaiddy, M., & Zorer Çelebi, Ş. (2022). Effect of active dry yeast and nano iron fertiliser on some yield and quality characteristics of maize (Zea mays L.) plants grown in alkaline soil [Unpublished Doctoral dissertation]. Van Yüzüncü Yıl University.
  • Ateş M. (2018). Measurement and examination techniques of nanoparticles. Turkish Journal of Scientific Review, 11(1), 63.
  • Burman, U., Saini, M., & Kumar, P. (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry, 95(4), 605-612. https://doi.org/10.1080/02772248.2013.803796
  • Cakmak, I. (2008). Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant and Soil, 302, 1-17. https://doi.org/10.1007/s11104-007-9466-3
  • Chikkanna, M.M., Neelagund, S.E., & Rajashekarappa, K.K. (2019). Green synthesis of zinc oxide nanoparticles (ZnO NPs) and their biological activity. SN Applied Sciences, 1(1), 117. https://doi.org/10.1007/s42452-018-0095-7
  • Das, S., Mukherjee, A., Sengupta, G., & Singh, V.K. (2020). Overview of nanomaterials synthesis methods, characterisation techniques and effect on seed germination: In Nano- Materials as Photocatalysts for Degradation of Environmental Pollutants (pp. 371-401). Elsevier. https://doi.org/10.1016/B978-0-12-818598-8.00018-3
  • de la Rosa, G., López-Moreno, M.L., de Haro, D., Botez, C.E., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2013). Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: root development and X-ray absorption spectroscopy studies. Pure and Applied Chemistry 4th, 85(12), 2161-2174. https://doi.org/10.1351/pac-con-12-09-05
  • El-Saadony, M.T., Saad, A.M., Najjar, A.A., Alzahrani, S.O., Alkhatib, F.M., Salem, E., … Hassan, M.A.A. (2021). The use of biological selenium nanoparticles to suppress Triticum aestivum L. crown and root rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 28(8), 4461-4471. https://doi.org/10.1016/j.sjbs.2021.04.043
  • Faizan, M., Faraz, A., Mir, A.R., Hayat, S. (2020). Role of zinc oxide nanoparticles in countering negative effects generated by cadmium in Lycopersicon esculentum. Journal of Plant Growth Regulation, 40, 101-115. https://doi.org/10.1007/s00344-019-10059-2
  • Gaafar, R., Diab, R., Halawa, M., Elshanshory, A., El-Shaer, A., & Hamouda, M. (2020). Role of zinc oxide nanoparticles in ameliorating salt tolerance in soybean. Egyptian Journal of Botany, 60(3), 733-747. https://doi.org/10.21608/ejbo.2020.26415.1475
  • García-López, J.I., Zavala-García, F., Olivares-Sáenz, E., Lira-Saldívar, R.H., Díaz Barriga-Castro, E., Ruiz-Torres, NA, ... & Niño-Medina, G. (2018). Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy, 8(10), 215. https://doi.org/10.3390/agronomy8100215
  • Gupta, N., Rai, S.K., Kumar, R., Singh, P.M., Chaubey, T., Singh, V., & Behera, T.K. (2024). Seed priming with engineered nanomaterials for mitigating abiotic stress in plants: In Nanotechnology for abiotic stress tolerance and management in crop plants (pp. 229-247). Academic Press. https://doi.org/10.1016/B978-0-443-18500-7.00015-6
  • Hassanisaadi, M., Barani, M., Rahdar, A., Heidary, M., Thysiadou, A., & Kyzas, G.Z. (2022). Role of agrochemical-based nanomaterials in plants: Biotic and abiotic stress with germination improvement of seeds. Plant Growth Regulation, 97(2), 375 418. https://doi.org/10.1007/s10725-021-00782-w
  • Hidayat Chai, M.H., Amir, N., Yahya, N., & Saaid, I.M. (2018). Characterization and colloidal stability of surface modified zinc oxide nanoparticle. In Journal of Physics: Conference Series, International conference on fundamental & applied sciences, a conference of world engineering, science & technology congress , Kuala Lumpur, Malaysia ,13-15 August, (Vol. 1123, p. 012007). IOP Publishing. https://doi.org/10.1088/1742-6596/1123/1/012007
  • Hoe, P.T., Linh, T.M., Van, N.T., Buu, N.Q., Mai, N.C., Ban, N.K., & Chau, N.H. (2018). Effects of nanoparticles zinc oxide and nano cobalt on the germination of soybean (Glycine max (L.) Merr). Vietnam Journal of Biotechnology, 16(3), 501 508. https://doi.org/10.15625/1811-4989/16/3/13472
  • Hunter, R.J. (1981). Zeta Potential in Colloid Science: Principles and applications. Academic. Press. https://doi.org/10.1016/C2013-0-07389-6
  • Imtiaz, H., Shiraz, M., Mir, A.R., Siddiqui, H., & Hayat, S. (2023). Nano-priming techniques for plant physio-biochemistry and stress tolerance. Journal of Plant Growth Regulation, 42(11), 6870-6890. https://doi.org/10.1007/s00344-023-10981-6
  • Itroutwar, P.D., Govindaraju, K., Tamilselvan, S., Kannan, M., Raja, K., & Subramanian, K.S. (2020). Seaweed-based biogenic ZnO nanoparticles for improving agro- morphological characteristics of rice (Oryza sativa L.). Journal of Plant Growth Regulation, 39, 717-728. https://doi.org/10.1007/s00344-019-10012-3
  • Johns, D.A., Cahill D. (2018). Effect of silicon dioxide nanoparticles on seed germination and growth of four different plant species [Msc dissertation, Deakin University]. Deakin University. https://hdl.handle.net/10536/DRO/DU:30132925
  • Khan, M.N., Fu, C., Li, J., Tao, Y., Li, Y., Hu, J., ... & Li, Z. (2022). Seed nanopriming: How do nanomaterials improve seed tolerance to salinity and drought? Chemosphere, 136911. https://doi.org/10.1016/j.chemosfer.2022.136911
  • Li, Y., Liang, L., Li, W., Ashraf, U., Ma, L., Tang, X., ... & Mo, Z. (2021). ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. Journal of Nanobiotechnology, 19, 1-19. https://doi.org/10.1186/s12951-021-00820-9
  • López-Moreno, M.L., de la Rosa, G., Hernández-Viezcas, J.Á., Castillo-Michel, H., Botez, C. E., Peralta-Videa, J.R., & Gardea-Torresdey, J.L. (2010). Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science & Technology, 44(19), 7315 7320. https://doi.org/10.1021/es903891gopen_in_new
  • Mahajan, P., Dhoke, S.K., Khanna, A.S., & Tarafdar, J.C. (2011). Effect of nano-ZnO on growth of mung bean (Vigna radiata) and chickpea (Cicer arietinum) seedlings using plant agar method. Applied Biological Research, 13(2), 54-61.
  • Mahakham, W., Sarmah, A.K., Maensiri, S., & Theerakulpisut, P. (2017). Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesised silver nanoparticles. Scientific Reports, 7(1), 8263. https://doi.org/10.1038/s41598-017-08669-5
  • Mohamed, E., Harbi, H., & Aref, N. (2019). Radioprotective Efficacy of zinc oxide nanoparticles on ꝩ-ray-induced nuclear DNA damage in Vicia faba L. as evaluated by DNA bioassays. Journal of Radiation Research and Applied Sciences, 12(1), 423-436. https://doi.org/10.1080/16878507.2019.1690798
  • Montanha, G.S., Rodrigues, E.S., Marques, J.P.R., de Almeida, E., Colzato, M., & Pereira de Carvalho, H.W. (2020). Zinc nanocoated seeds: an alternative to boost soybean seed germination and seedling development. SN Applied Sciences, 2(5), 857. https://doi.org/10.1007/s42452-020-2630-6
  • Munir, T., Rizwan, M., Kashif, M., Shahzad, A., Ali, S., Amin, N., ... & Imran, M. (2018). Effect of zinc oxide nanoparticles on the growth and zn uptake in whea (Triticum aestivum L.) by see priming method. Digest Journal of Nanomaterials & Biostructures (djnb), 13(1).
  • Nemček, L., Šebesta, M., Urík, M., Bujdoš, M., Dobročka, E., & Vávra, I. (2020). Impact of bulk ZnO, ZnO nanoparticles and dissolved Zn on early growth stages of barley-a pot experiment. Plants, 9(10), 1365. https://doi.org/10.3390/plants9101365
  • Nile, S.H., Thiruvengadam, M., Wang, Y., Samynathan, R., Shariati, M.A., Rebezov, M., ... Kai, G. (2022). Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. Journal of Nanobiotechnology, 20(1), 1-31. https://doi.org/10.1186/s12951-022-01423-8
  • Paparella, S., Araújo, S.S., Rossi, G., Wijayasinghe, M., Carbonera, D., & Balestrazzi, A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Reports, 34, 1281-1293. https://doi.org/10.1007/s00299-015-1784-y
  • Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., & Pradeep, T. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6), 905 927. https://doi.org/10.1080/01904167.2012.663443
  • R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/
  • Rai-Kalal, P., & Jajoo, A. (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 160, 341-351. https://doi.org/10.1016/j.plaphy.2021.01.032
  • Rajput, V.D., Minkina, T., Kumari, A., Harish Singh, V.K., Verma, K.K., Mandzhieva, S., … Keswani C. (2021). Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants, 10, 1221. https://doi.org/10.3390/plants10061221
  • Rameshraddy, G., Pavithra, J., Mahesh, S., Geetha, K.N., & Shankar, A.G. (2017). Seed priming and foliar spray with nano zinc improves stress adaptability and seed zinc content without compromising seed yield in ragi (Finger millet). International Journal of Pure and Applied Bioscience, 5(3), 251-258.http://dx.doi.org/10.18782/2320-7051.2906
  • RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/
  • Santás-Miguel, V., Arias-Estévez, M., Rodríguez-Seijo, A., & Arenas-Lago, D. (2023). Use of metal nanoparticles in agriculture. A review on the effects on plant germination. Environmental Pollution, 122222. https://doi.org/10.1016/j.envpol.2023.122222
  • Sharma, D., Afzal, S., & Singh, N.K. (2021). Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 336, 64-75. https://doi.org/10.1016/j.jbiotec.2021.06.014
  • Sharma, P., Urfan, M., Anand, R., Sangral, M., Hakla, H.R., Sharma, S., & Bhagat, M. (2022). Green synthesis of zinc oxide nanoparticles using Eucalyptus lanceolata leaf litter: characterisation, antimicrobial and agricultural efficacy in maize. Physiology and Molecular Biology of Plants, 28(2), 363-381. https://doi.org/10.1007/s12298-022-01136-0
  • Srivastav, A., Ganjewala, D., Singhal, R.K., Rajput, V.D., Minkina, T., Voloshina, M., & Shrivastava, M. (2021). Effect of ZnO nanoparticles on growth and biochemical responses of wheat and maize. Plants, 10(12), 2556. https://doi.org/10.3390/plants10122556
  • Sytar, O., Kumari, P., Yadav, S., Brestic, M., & Rastogi, A. (2019). Phytohormone priming: regulator for heavy metal stress in plants. Journal of Plant Growth Regulation, 38, 739- 752. https://doi.org/10.1007/s00344-018-9886-8
  • Thounaojam, T.C., Meetei, T.T., Devi, Y.B., Panda, S.K., & Upadhyaya, H. (2021). Zinc oxide nanoparticles (ZnO-NPs): a promising nanoparticle in renovating plant science. Acta Physiologiae Plantarum, 43, 1-21. https://doi.org/10.1007/s11738-021-03307-0
  • Wang, X., Xie, H., Wang, P., & Yin, H. (2023). Nanoparticles in plants: Uptake, transport and physiological activity in leaf and root. Materials, 16(8), 3097. https://doi.org/10.3390/ma16083097
  • Yoon, S.J., Kwak, J.I., Lee, W.M., Holden, P.A., & An, Y.J. (2014). Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicology and Environmental Safety, 100, 131-137. https://doi.org/10.1016/j.ecoenv.2013.10.014
  • Youssef, M., & Elamawi, R. (2020). Evaluation of Phytotoxicity, Cytotoxicity, and Genotoxicity of ZnO Nanoparticles in Vicia faba. Environmental Science and Pollution Research, 27(16), 18972-18984. https://doi.org/10.1007/s11356-018-3250-1
  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L.R. (2020). Zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Science of the Total Environment, 738, 140240. https://doi.org/10.1016/j.scitotenv.2020.140240
  • Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L.R. (2022). Responses of soybean (Glycine max [L.] Merr.) to zinc oxide nanoparticles: Understanding changes in root system architecture, zinc tissue partitioning and soil characteristics. Science of the Total Environment, 835, 155348. https://doi.org/10.1016/j.scitotenv.2022.155348
  • Zain, M., Ma, H., Chaudhary, S., Nuruzaman, M., Azeem, I., Mehmood, F., ... & Sun, C. (2023). Nanotechnology in precision agriculture: Advancing towards sustainable crop production. Plant Physiology and Biochemistry, 108244. https://doi.org/10.1016/j.plaphy.2023.108244
  • Zhang, R., Zhang, H., Tu, C., Hu, X., Li, L., Luo, Y., & Christie, P. (2015). Phytotoxicity of ZnO nanoparticles and the released Zn (II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Environmental Science and Pollution Research, 22, 11109-11117. https://doi.org/10.1007/s11356-015-4325-x
There are 50 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Articles
Authors

Burcu Akbay 0000-0001-7163-5458

Fehime Sevil Yalçın 0000-0003-0661-6431

Project Number FYL2022-3972
Early Pub Date January 19, 2025
Publication Date
Submission Date August 4, 2024
Acceptance Date October 27, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Akbay, B., & Yalçın, F. S. (2025). Effect of ZnO nano priming on germination and root length of soybean seeds (Glycine max L.). International Journal of Secondary Metabolite, 12(1), 204-215.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905