Research Article
BibTex RIS Cite

In-silico analysis of stress tolerance and secondary metabolite production in wild Sesamum mulayanum compared to cultivated Sesamum indicum

Year 2025, Volume: 12 Issue: 2, 306 - 320

Abstract

Sesame (Sesamum indicum) is a globally cultivated oilseed crop known for its nutraceutical and pharmaceutical significance. Its rich content of antioxidant lignans, mono- and polyunsaturated fatty acids, vitamins, minerals, carbohydrates, and proteins contributes to its importance. To enhance understanding of sesame's genetic potential for crop improvement and utilization, transcriptome data from two sesame species, Sesamum indicum and Sesamum mulayanum, at two developmental stages (10 and 30 days after pollination, DAP) were analyzed using the Galaxy platform to identify differentially expressed genes. The results showed that 170 genes were up-regulated, and 46 genes were down-regulated. Gene ontology analysis revealed that up-regulated genes were involved in diverse molecular functions and biological processes related to defense response to nematode, systemic acquired resistance, abscisic acid response, and detoxification, among others. Similarly, pathway analysis revealed that the up-regulated genes were involved in pathways related to plant defense, secondary metabolite synthesis, fatty acid synthesis, and phenylalanine, tyrosine and tryptophan biosynthesis. A network analysis was also predicted for describing the interaction of secondary metabolites and stress tolerance genes. The results of the present study provide new insights into the genetic and genomic understanding of sesame, thereby helping in future crop improvement.

Supporting Institution

PSG College of Technology, Coimbatore, India 641004

Thanks

Authors thank PSG college of Technology for their computing facility.

References

  • Bal, A., Samal, P., Chakraborti, M., Mukherjee, A.K., Ray, S., Molla, K.A., ... & Kar, M.K. (2020). Stable quantitative trait locus (QTL) for sheath blight resistance from rice cultivar CR 1014. Euphytica, 216, 1-19. https://doi.org/10.1007/s10681-020-02702-x
  • Cai, J., Zhang, Y., He, R., Jiang, L., Qu, Z., Gu, J., … Wang, D. (2024). LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis. EMBO Reports, 25(2), 796–812. https://doi.org/10.1038/s44319-023-00030-4
  • Chowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1), 17251.
  • Catarino, L., Romeiras, M.M., Bancessi, Q., Duarte, D., Faria, D., Monteiro, F., & Moldão, M. (2019). Edible leafy vegetables from West Africa (Guinea-Bissau): Consumption, trade and food potential. Foods, 8(10). https://doi.org/10.3390/foods8100493
  • Daphedar, A.B., Khan, S., Kakkalamel, S., Taranath, T.C. (2024). Plant phenolics compounds and stress management: A review. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Biotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-3334-1_20
  • Dar, A.A., Kancharla, P.K., Chandra, K., Sodhi, Y.S., & Arumugam, N. (2019). Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. Journal of Food Science and Technology, 56(2), 976–986. https://doi.org/10.1007/s13197-018-03564-x
  • Dar, N.A., Mir, M.A., Mir, J.I., Mansoor, S., Showkat, W., Parihar, T.J., … Masoodi, K.Z. (2022). MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Molecular Biology Reports, 49(6), 5353–5364. https://doi.org/10.1007/s11033-021-07077-3
  • Dossa, K., Diouf, D., Wang, L., Wei, X., Zhang, Y., Niang, M., … Cisse, N. (2017). The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era. Frontiers in Plant Science, 8, 1154. https://doi.org/10.3389/fpls.2017.01154
  • Dutta, D., Awon, V.K., & Gangopadhyay, G. (2020). Transcriptomic dataset of cultivated (Sesamum indicum), wild (S. mulayanum), and interspecific hybrid sesame in response to induced Macrophomina phaseolina infection. Data in Brief, 33. https://doi.org/10.1016/j.dib.2020.106448
  • Dutta, D., Harper, A., & Gangopadhyay, G. (2022). Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. Nucleus, 65, 151 164. https://doi.org/10.1007/s13237-022-00389-0
  • Gao, Q.M., Zhu, S., Kachroo, P., & Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 6(APR), 1 12. https://doi.org/10.3389/fpls.2015.00228
  • Gupta, R., & Chakrabarty, S.K. (2013). Gibberellic acid in plant. Plant Signaling & Behavior, 8(9), e25504. https://doi.org/10.4161/psb.25504
  • Harada, E., Murata, J., Ono, E., Toyonaga, H., Shiraishi, A., Hideshima, K., … Horikawa, M. (2020). (+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame. The Plant Journal: For Cell and Molecular Biology, 104(4), 1117 1128. https://doi.org/10.1111/tpj.14989
  • Heil, M., & Bostock, R.M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany, 89(5), 503 512. https://doi.org/10.1093/aob/mcf076
  • Hoda, A.M.A., Moustafa, H.A, Moharam., Ahmed, Y., & Mahdy, et al. Biochemical and histological changes in sesame roots associated with charcoal rot disease resistance and enhancing plant growth induced by gamma-irradiated seeds at low doses. 29 May 2024, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-4284362/v1
  • Hu, W., Kingsbury, K., Mishra, S., & Digennaro, P. (2020). A comprehensive transcriptional profiling of pepper responses to root knot nematode. Genes, 11(12), 1 14. https://doi.org/10.3390/genes11121507
  • Jan, R., Khan, M.A., Asaf, S., Lubna, Park, J.R., Lee, I.J., & Kim, K.M. (2021). Flavonone 3‐hydroxylase relieves bacterial leaf blight stress in rice via overaccumulation of antioxidant flavonoids and induction of defense genes and hormones. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22116152
  • Kasote, D.M., Katyare, S.S., Hegde, M.V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. https://doi.org/10.7150/ijbs.12096
  • Kim, M.Y., Kim, S., Lee, J., Kim, J.I., Oh, E., Kim, S.W., Lee, M.H. (2023). Lignan-Rich Sesame (Sesamum indicum L.) Cultivar exhibits in vitro anti-cholinesterase activity, anti-neurotoxicity in amyloid-β induced SH-SY5Y cells, and produces an in vivo nootropic effect in scopolamine-induced memory impaired mice. Antioxidants, 12(5). https://doi.org/10.3390/antiox12051110
  • Kulkarni, V.V., Ranganatha, C.N., & Shankergoud, I. (2017). Interspecific crossing barriers in sesame (Sesamum indicum L.). International Journal of Current Microbiology and Applied Sciences, 6(10), 4894–4900. https://doi.org/10.20546/ijcmas.2017.610.459
  • Li, Z., Zhong, L., Du, Z., Chen, G., Shang, J., Yang, Q., … Zhang, G. (2019). Network analyses of differentially expressed genes in osteoarthritis to identify hub genes. BioMed Research International, 2019. https://doi.org/10.1155/2019/8340573
  • Maina, E.G., Madivoli, E.S., Ouma, J.A., Ogilo, J.K., & Kenya, J.M. (2019). Evaluation of nutritional value of Asystasia mysorensis and Sesamum angustifolia and their potential contribution to human health. Food Science and Nutrition, 7(6), 2176–2185. https://doi.org/10.1002/fsn3.1064
  • Mili, A., Das, S., Nandakumar, K., & Lobo, R. (2021). A comprehensive review on Sesamum indicum L.: Botanical, ethnopharmacological, phytochemical, and pharmacological aspects. Journal of Ethnopharmacology, 281(), 114503. https://doi.org/10.1016/j.jep.2021.114503
  • Nimmakayala, P., Perumal, R., Mulpuri, S., Reddy, U,K. (2011). Sesamum. In Wild Crop Relatives: Genomic and Breeding Resources (pp. 261-273). Springer Berlin Heidelberg.
  • Pathak, N., Bhaduri, A., Bhat, K.V., & Rai, A.K. (2015). Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species - a domestication footprint. Plant Biology, 17(5), 1039–1046. https://doi.org/10.1111/plb.12327
  • Pathak, N., Verma, N., Singh, A., Bhat, K.V., & Lakhanpaul, S. (2020). Investigations on diverse sesame (S. Indicum L.) germplasm and its wild allies reveal wide variation in antioxidant potential. Physiology and Molecular Biology of Plants, 26(4), 697–704. https://doi.org/10.1007/s12298-020-00784-4
  • Singh, P.K., Akram, M., Vajpeyi, M., Srivastava, R.L., Kumar, K., & Naresh, R. (2007). Screening and development of resistant sesame varieties against phytoplasma. Bulletin of Insectology, 60(2), 303–304.
  • Venkataravanappa, V. (2017). Detection, characterization and in-silico analysis of candidatus phytoplasma Australasia associated with phyllody disease of Sesame. Advances in Plants & Agriculture Research, 7(3). https://doi.org/10.15406/apar.2017.07.00256
  • Wang, L., Yu, J., Zhang, Y., You, J., Zhang, X., & Wang, L. (2021). Sinbase 2.0: An updated database to study multi omics in Sesamum indicum. Plants, 10(2), 1 9. https://doi.org/10.3390/plants10020272
  • Wang, X., Wang, S., Lin, Q., Lu, J., Lv, S., Zhang, Y., … Li, P. (2023). The wild allotetraploid sesame genome provides novel insights into evolution and lignan biosynthesis. Journal of Advanced Research, 50, 13–24. https://doi.org/10.1016/j.jare.2022.10.004
  • Wei, X., Gong, H., Yu, J., Liu, P., Wang, L., Zhang, Y., & Zhang, X. (2017). SesameFG: an integrated database for the functional genomics of sesame. Scientific Reports, 7(1), 2342.
  • Yaseen, G., Ahmad, M., Zafar, M., Akram, A., Sultana, S., Ahmed, S.N., & Kilic, O. (2021). Sesame (Sesamum indicum L.). In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 253 269). Elsevier. https://doi.org/10.1016/B978-0-12-821886-0.00005-1
  • Zhang, Y.P., Zhang, Y.Y., Thakur, K., Zhang, F., Hu, F., Zhang, J.G., Wei, P.C., & Wei, Z.J. (2021). Integration of miRNAs, degradome, and transcriptome omics uncovers a complex regulatory network and provides insights into lipid and fatty acid synthesis during sesame seed development. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.709197

In-silico analysis of stress tolerance and secondary metabolite production in wild Sesamum mulayanum compared to cultivated Sesamum indicum

Year 2025, Volume: 12 Issue: 2, 306 - 320

Abstract

Sesame (Sesamum indicum) is a globally cultivated oilseed crop known for its nutraceutical and pharmaceutical significance. Its rich content of antioxidant lignans, mono- and polyunsaturated fatty acids, vitamins, minerals, carbohydrates, and proteins contributes to its importance. To enhance understanding of sesame's genetic potential for crop improvement and utilization, transcriptome data from two sesame species, Sesamum indicum and Sesamum mulayanum, at two developmental stages (10 and 30 days after pollination, DAP) were analyzed using the Galaxy platform to identify differentially expressed genes. The results showed that 170 genes were up-regulated, and 46 genes were down-regulated. Gene ontology analysis revealed that up-regulated genes were involved in diverse molecular functions and biological processes related to defense response to nematode, systemic acquired resistance, abscisic acid response, and detoxification, among others. Similarly, pathway analysis revealed that the up-regulated genes were involved in pathways related to plant defense, secondary metabolite synthesis, fatty acid synthesis, and phenylalanine, tyrosine and tryptophan biosynthesis. A network analysis was also predicted for describing the interaction of secondary metabolites and stress tolerance genes. The results of the present study provide new insights into the genetic and genomic understanding of sesame, thereby helping in future crop improvement.

Supporting Institution

PSG College of Technology, Coimbatore, India 641004

Thanks

Authors thank PSG college of Technology for their computing facility.

References

  • Bal, A., Samal, P., Chakraborti, M., Mukherjee, A.K., Ray, S., Molla, K.A., ... & Kar, M.K. (2020). Stable quantitative trait locus (QTL) for sheath blight resistance from rice cultivar CR 1014. Euphytica, 216, 1-19. https://doi.org/10.1007/s10681-020-02702-x
  • Cai, J., Zhang, Y., He, R., Jiang, L., Qu, Z., Gu, J., … Wang, D. (2024). LncRNA DANA1 promotes drought tolerance and histone deacetylation of drought responsive genes in Arabidopsis. EMBO Reports, 25(2), 796–812. https://doi.org/10.1038/s44319-023-00030-4
  • Chowdhury, S., Basu, A., & Kundu, S. (2017). Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Scientific Reports, 7(1), 17251.
  • Catarino, L., Romeiras, M.M., Bancessi, Q., Duarte, D., Faria, D., Monteiro, F., & Moldão, M. (2019). Edible leafy vegetables from West Africa (Guinea-Bissau): Consumption, trade and food potential. Foods, 8(10). https://doi.org/10.3390/foods8100493
  • Daphedar, A.B., Khan, S., Kakkalamel, S., Taranath, T.C. (2024). Plant phenolics compounds and stress management: A review. In: Lone, R., Khan, S., Mohammed Al-Sadi, A. (eds) Plant Phenolics in Biotic Stress Management. Springer, Singapore. https://doi.org/10.1007/978-981-99-3334-1_20
  • Dar, A.A., Kancharla, P.K., Chandra, K., Sodhi, Y.S., & Arumugam, N. (2019). Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. Journal of Food Science and Technology, 56(2), 976–986. https://doi.org/10.1007/s13197-018-03564-x
  • Dar, N.A., Mir, M.A., Mir, J.I., Mansoor, S., Showkat, W., Parihar, T.J., … Masoodi, K.Z. (2022). MYB-6 and LDOX-1 regulated accretion of anthocyanin response to cold stress in purple black carrot (Daucus carota L.). Molecular Biology Reports, 49(6), 5353–5364. https://doi.org/10.1007/s11033-021-07077-3
  • Dossa, K., Diouf, D., Wang, L., Wei, X., Zhang, Y., Niang, M., … Cisse, N. (2017). The Emerging Oilseed Crop Sesamum indicum Enters the "Omics" Era. Frontiers in Plant Science, 8, 1154. https://doi.org/10.3389/fpls.2017.01154
  • Dutta, D., Awon, V.K., & Gangopadhyay, G. (2020). Transcriptomic dataset of cultivated (Sesamum indicum), wild (S. mulayanum), and interspecific hybrid sesame in response to induced Macrophomina phaseolina infection. Data in Brief, 33. https://doi.org/10.1016/j.dib.2020.106448
  • Dutta, D., Harper, A., & Gangopadhyay, G. (2022). Transcriptomic analysis of high oil-yielding cultivated white sesame and low oil-yielding wild black sesame seeds reveal differentially expressed genes for oil and seed coat colour. Nucleus, 65, 151 164. https://doi.org/10.1007/s13237-022-00389-0
  • Gao, Q.M., Zhu, S., Kachroo, P., & Kachroo, A. (2015). Signal regulators of systemic acquired resistance. Frontiers in Plant Science, 6(APR), 1 12. https://doi.org/10.3389/fpls.2015.00228
  • Gupta, R., & Chakrabarty, S.K. (2013). Gibberellic acid in plant. Plant Signaling & Behavior, 8(9), e25504. https://doi.org/10.4161/psb.25504
  • Harada, E., Murata, J., Ono, E., Toyonaga, H., Shiraishi, A., Hideshima, K., … Horikawa, M. (2020). (+)-Sesamin-oxidising CYP92B14 shapes specialised lignan metabolism in sesame. The Plant Journal: For Cell and Molecular Biology, 104(4), 1117 1128. https://doi.org/10.1111/tpj.14989
  • Heil, M., & Bostock, R.M. (2002). Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Annals of Botany, 89(5), 503 512. https://doi.org/10.1093/aob/mcf076
  • Hoda, A.M.A., Moustafa, H.A, Moharam., Ahmed, Y., & Mahdy, et al. Biochemical and histological changes in sesame roots associated with charcoal rot disease resistance and enhancing plant growth induced by gamma-irradiated seeds at low doses. 29 May 2024, PREPRINT (Version 1) available at Research Square. https://doi.org/10.21203/rs.3.rs-4284362/v1
  • Hu, W., Kingsbury, K., Mishra, S., & Digennaro, P. (2020). A comprehensive transcriptional profiling of pepper responses to root knot nematode. Genes, 11(12), 1 14. https://doi.org/10.3390/genes11121507
  • Jan, R., Khan, M.A., Asaf, S., Lubna, Park, J.R., Lee, I.J., & Kim, K.M. (2021). Flavonone 3‐hydroxylase relieves bacterial leaf blight stress in rice via overaccumulation of antioxidant flavonoids and induction of defense genes and hormones. International Journal of Molecular Sciences, 22(11). https://doi.org/10.3390/ijms22116152
  • Kasote, D.M., Katyare, S.S., Hegde, M.V., & Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences, 11(8), 982–991. https://doi.org/10.7150/ijbs.12096
  • Kim, M.Y., Kim, S., Lee, J., Kim, J.I., Oh, E., Kim, S.W., Lee, M.H. (2023). Lignan-Rich Sesame (Sesamum indicum L.) Cultivar exhibits in vitro anti-cholinesterase activity, anti-neurotoxicity in amyloid-β induced SH-SY5Y cells, and produces an in vivo nootropic effect in scopolamine-induced memory impaired mice. Antioxidants, 12(5). https://doi.org/10.3390/antiox12051110
  • Kulkarni, V.V., Ranganatha, C.N., & Shankergoud, I. (2017). Interspecific crossing barriers in sesame (Sesamum indicum L.). International Journal of Current Microbiology and Applied Sciences, 6(10), 4894–4900. https://doi.org/10.20546/ijcmas.2017.610.459
  • Li, Z., Zhong, L., Du, Z., Chen, G., Shang, J., Yang, Q., … Zhang, G. (2019). Network analyses of differentially expressed genes in osteoarthritis to identify hub genes. BioMed Research International, 2019. https://doi.org/10.1155/2019/8340573
  • Maina, E.G., Madivoli, E.S., Ouma, J.A., Ogilo, J.K., & Kenya, J.M. (2019). Evaluation of nutritional value of Asystasia mysorensis and Sesamum angustifolia and their potential contribution to human health. Food Science and Nutrition, 7(6), 2176–2185. https://doi.org/10.1002/fsn3.1064
  • Mili, A., Das, S., Nandakumar, K., & Lobo, R. (2021). A comprehensive review on Sesamum indicum L.: Botanical, ethnopharmacological, phytochemical, and pharmacological aspects. Journal of Ethnopharmacology, 281(), 114503. https://doi.org/10.1016/j.jep.2021.114503
  • Nimmakayala, P., Perumal, R., Mulpuri, S., Reddy, U,K. (2011). Sesamum. In Wild Crop Relatives: Genomic and Breeding Resources (pp. 261-273). Springer Berlin Heidelberg.
  • Pathak, N., Bhaduri, A., Bhat, K.V., & Rai, A.K. (2015). Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species - a domestication footprint. Plant Biology, 17(5), 1039–1046. https://doi.org/10.1111/plb.12327
  • Pathak, N., Verma, N., Singh, A., Bhat, K.V., & Lakhanpaul, S. (2020). Investigations on diverse sesame (S. Indicum L.) germplasm and its wild allies reveal wide variation in antioxidant potential. Physiology and Molecular Biology of Plants, 26(4), 697–704. https://doi.org/10.1007/s12298-020-00784-4
  • Singh, P.K., Akram, M., Vajpeyi, M., Srivastava, R.L., Kumar, K., & Naresh, R. (2007). Screening and development of resistant sesame varieties against phytoplasma. Bulletin of Insectology, 60(2), 303–304.
  • Venkataravanappa, V. (2017). Detection, characterization and in-silico analysis of candidatus phytoplasma Australasia associated with phyllody disease of Sesame. Advances in Plants & Agriculture Research, 7(3). https://doi.org/10.15406/apar.2017.07.00256
  • Wang, L., Yu, J., Zhang, Y., You, J., Zhang, X., & Wang, L. (2021). Sinbase 2.0: An updated database to study multi omics in Sesamum indicum. Plants, 10(2), 1 9. https://doi.org/10.3390/plants10020272
  • Wang, X., Wang, S., Lin, Q., Lu, J., Lv, S., Zhang, Y., … Li, P. (2023). The wild allotetraploid sesame genome provides novel insights into evolution and lignan biosynthesis. Journal of Advanced Research, 50, 13–24. https://doi.org/10.1016/j.jare.2022.10.004
  • Wei, X., Gong, H., Yu, J., Liu, P., Wang, L., Zhang, Y., & Zhang, X. (2017). SesameFG: an integrated database for the functional genomics of sesame. Scientific Reports, 7(1), 2342.
  • Yaseen, G., Ahmad, M., Zafar, M., Akram, A., Sultana, S., Ahmed, S.N., & Kilic, O. (2021). Sesame (Sesamum indicum L.). In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 253 269). Elsevier. https://doi.org/10.1016/B978-0-12-821886-0.00005-1
  • Zhang, Y.P., Zhang, Y.Y., Thakur, K., Zhang, F., Hu, F., Zhang, J.G., Wei, P.C., & Wei, Z.J. (2021). Integration of miRNAs, degradome, and transcriptome omics uncovers a complex regulatory network and provides insights into lipid and fatty acid synthesis during sesame seed development. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.709197
There are 33 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Biotechnology
Journal Section Articles
Authors

Selvi Subramanian 0000-0003-4061-0973

Dharanidharan Manivannan This is me 0000-0001-8590-3564

Early Pub Date March 19, 2025
Publication Date
Submission Date November 21, 2023
Acceptance Date November 20, 2024
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Subramanian, S., & Manivannan, D. (2025). In-silico analysis of stress tolerance and secondary metabolite production in wild Sesamum mulayanum compared to cultivated Sesamum indicum. International Journal of Secondary Metabolite, 12(2), 306-320.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905