Research Article
BibTex RIS Cite

The effect of inundation levels on secondary metabolites accumulation in Avicennia marina (Forsk.) roots under different salinity regimes

Year 2025, Volume: 12 Issue: 2, 368 - 380

Abstract

Salinity and inundation are factors that affect secondary metabolites. This research aims to study the range of typical secondary metabolite content in Avicennia marina growing at different salinity levels, analyze the level of inundation that causes peak stress, and examine the impact of inundation stress on A. marina under different salinity regimes. This study used a 2-factor factorial complete randomized design, namely salinity level (15, 20, 25, 30, and 35 ppt), and inundation level (10, 15, and 20 cm). The parameters measured were tannin content, total alkaloids, and total phenols in A. marina roots analyzed by spectrophotometry method. Data were analyzed by ANOVA and further tested with DMRT test. The concentration range of tannins, total alkaloids, and total phenols was 14.29–18.45%, 0.893–1.331 mgQE/g, and 62.7–8.75 mgGAE/g, respectively. Peak stress-induced by inundation in A. marina indicated by high secondary metabolite contents was differentiated based on the salinity regime. Peak secondary metabolite content was obtained from the combination of salinity and inundation of 25 ppt + 20 cm, 20 ppt + 15 cm, and 15 ppt + 10 cm for tannin, total alkaloid, and total phenol content with values of 18.26±0.17%; 1.301±0.021 mgQE/g; and 83.98±2.02 mgGAE/g. The research found that simultaneous effect of salinity and inundation impacted for all metabolites. Our result suggests that salinity has underlying effect on total alkaloid and total phenol concentration in A. marina roots, but not tannin. Inundation significantly affects tannin content, amplifying its effects on total alkaloid and total phenol content.

Supporting Institution

Diponegoro University

Project Number

569-104/UN7.D2/PP/IV2023

References

  • Alhassan, A.B., & Aljahdali, M.O. (2021). Nutrient and Physicochemical Properties as Potential Causes of Stress in Mangroves of the Central Red Sea. PLOS ONE, 16(12), e0261620. https://doi.org/10.1371/journal.pone.0261620
  • Anderson, D.L., Ruggiero, P., Mendez, F.J., Barnard, P.L., Erikson, L.H., O’Neill, A.C., … Marra, J. (2021). Projecting Climate Dependent Coastal Flood Risk With A Hybrid Statistical Dynamical Model. Earth’s Future, 9(12), 1 24. https://doi.org/10.1029/2021EF002285
  • Barnuevo, A., & Asaeda, T. (2018). Integrating The Ecophysiology And Biochemical Stress Indicators Into The Paradigm Of Mangrove Ecology And A Rehabilitation Blueprint. PLOS ONE, 13(8), e0202227. https://doi.org/10.1371/journal.pone.0202227
  • Chambers, L.G., Guevara, R., Boyer, J.N., Troxler, T.G., & Davis, S.E. (2016). Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands, 36(2), 361–371. https://doi.org/10.1007/s13157-016-0745-8
  • Cloern, J.E., Jassby, A.D., Schraga, T.S., Nejad, E., & Martin, C. (2017). Ecosystem variability along the estuarine salinity gradient: Examples from long‐term study of San Francisco bay. Limnology and Oceanography, 62(S1), S272–S291. https://doi.org/10.1002/lno.10537
  • Cui, M., Wang, Z., & Wang, B. (2022). Survival strategies of mangrove (Ceriops tagal (Perr.) C.B. Rob) and the inspired corrosion inhibitor. Frontiers in Materials, 9(June), 1–10. https://doi.org/10.3389/fmats.2022.879525
  • Di Nitto, D., Neukermans, G., Koedam, N., Defever, H., Pattyn, F., Kairo, J.G., & Dahdouh-Guebas, F. (2014). Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences, 11(3), 857–871. https://doi.org/10.5194/bg-11-857-2014
  • Etongo, D., D’offay, K., Vel, T., Murugaiyan, P., & Henriette, E. (2022). Growth rate and survivorship of Rhizophora mucronata, Avicennia marina, and Ceriops tagal seedlings with freshwater and seawater treatment for mangrove propagation in nurseries. Applied Ecology and Environmental Research, 20(6), 5409 5431. https://doi.org/10.15666/aeer/2006_54095431
  • Gajula, H., Kumar, V., Vijendra, P.D., Rajashekar, J., Sannabommaji, T., & Basappa, G. (2020). Secondary metabolites from mangrove plants and their biological activities. In Biotechnological Utilization of Mangrove Resources (pp. 117 134). Elsevier. https://doi.org/10.1016/B978-0-12-819532-1.00005-6
  • Haigh, I.D. (2017). Tides and water levels. In J. Carlton, P. Jukes, & C.Y. Sang (Eds.), Encyclopedia of Maritime and Offshore Engineering (pp. 1–13). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118476406.emoe122
  • Hurmat, Shri, R., & Bansal, G. (2020). Does abiotic stresses enhance the production of secondary metabolites? A review. The Pharma Innovation Journal, 9(1), 412–422.
  • Jiménez-Martínez, J., García-Aróstegui, J.L., Hunink, J.E., Contreras, S., Baudron, P., & Candela, L. (2016). The role of groundwater in highly human-modified hydrosystems: A review of impacts and mitigation options in the campo de cartagena-mar menor coastal plain (SE Spain). Environmental Reviews, 24(4), 377–392. https://doi.org/10.1139/er-2015-0089
  • Li, B., Shi, X., Lian, L., Chen, Y., Chen, Z., & Sun, X. (2020). Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology, 584(February), 124684. https://doi.org/10.1016/j.jhydrol.2020.124684
  • Li, H., Li, Z., Shen, Z.-J., Luo, M.-R., Liu, Y.-L., Wei, M.-Y., … Zheng, H.-L. (2020). Physiological and proteomic responses of mangrove plant Avicennia marina seedlings to simulated periodical inundation. Plant and Soil, 450(1 2), 231 254. https://doi.org/10.1007/s11104-020-04474-8
  • Limaye, R.B., Kumaran, K.P.N., & Padmalal, D. (2014). Mangrove habitat dynamics in response to holocene sea level and climate changes along southwest coast of India. Quaternary International, 325, 116–125. https://doi.org/10.1016/j.quaint.2013.12.031
  • Liu, H., & Wei, Z. (2021). Intercomparison of global sea surface salinity from multiple datasets over 2011–2018. Remote Sensing, 13(4), 811. https://doi.org/10.3390/rs13040811
  • Luo, L., Wu, R., Gu, J.-D., Zhang, J., Deng, S., Zhang, Y., Wang, L., & He, Y. (2018). Influence of mangrove roots on microbial abundance and ecoenzyme activity in sediments of a subtropical coastal mangrove ecosystem. International Biodeterioration & Biodegradation, 132(April), 10–17. https://doi.org/10.1016/j.ibiod.2018.05.002
  • Mawdsley, R.J., Haigh, I.D., & Wells, N.C. (2015). Global secular changes in different tidal high water, low water and range levels. Earth’s Future, 3(2), 66 81. https://doi.org/10.1002/2014EF000282
  • Naidoo, G., & Naidoo, K. (2017). Are pioneer mangroves more vulnerable to oil pollution than later successional species? Marine Pollution Bulletin, 121(1 2), 135 142. https://doi.org/10.1016/j.marpolbul.2017.05.067
  • Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11). https://doi.org/10.1002/cbdv.202100345
  • Perri, S., Viola, F., Noto, L.V., & Molini, A. (2017). Salinity and periodic inundation controls on the soil-plant-atmosphere continuum of gray mangroves. Hydrological Processes, 31(6), 1271–1282. https://doi.org/10.1002/hyp.11095
  • Pichler, H.A., Gray, C.A., Broadhurst, M.K., Spach, H.L., & Nagelkerken, I. (2017). Seasonal and environmental influences on recruitment patterns and habitat usage among resident and transient fishes in a world heritage site subtropical estuary. Journal of Fish Biology, 90(1), 396–416. https://doi.org/10.1111/jfb.13191
  • Ravi, S., Young, T., Macinnis-Ng, C., Nyugen, T.V., Duxbury, M., Alfaro, A.C., & Leuzinger, S. (2020). Untargeted metabolomics in halophytes: the role of different metabolites in New Zealand mangroves under multi-factorial abiotic stress conditions. Environmental and Experimental Botany, 173(October 2019), 103993. https://doi.org/10.1016/j.envexpbot.2020.103993
  • Reshi, Z.A., Waquar A. Alexander S.L., Saad Bin Javed. (2023). From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and In vitro approaches. Metabolites. 13(895). https://doi.org/10.3390/metabo13080895
  • Salmo, S., & Juanico, D.E. (2015). An individual-based model of long-term forest growth and carbon sequestration in planted mangroves under salinity and inundation stresses. International Journal of Philippine Science and Technology, 8(2), 31 35. https://doi.org/10.18191/2015-08-2-019
  • Sarvade, D.D., Gamit, R., Shukla, V.J., & Acharya, R. (2020). Quantification of total alkaloid, tannin, flavonoid, phenolic, and chlorogenic acid contents of Leea macrophyla roxb. ex hornem. International Journal of Green Pharmacy. 14(2), 138-145.
  • Shammi, M., Rahman, M.M., Islam, M.A., Bodrud-Doza, M., Zahid, A., Akter, Y., Quaiyum, S., & Kurasaki, M. (2017). Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh. Environmental Science and Pollution Research, 24(16), 14273–14290. https://doi.org/10.1007/s11356-017-8976-7
  • Sofian, A., Kusmana, C., Fauzi, A., & Rusdiana, O. (2019). Ecosystem services-based mangrove management strategies in Indonesia: A review. AACL Bioflux, 12(1), 151–166.
  • Tabasum, S., Khare, S., & Jain, K. (2016). Spectrophotometric quantiification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. seed. Asian Journal of Pharmaceutical and Clinical Research. 9(2), 371-374.
  • van Bijsterveldt, C.E.J., Debrot, A.O., Bouma, T.J., Maulana, M.B., Pribadi, R., Schop, J., Tonneijck, F.H., & van Wesenbeeck, B.K. (2022). to plant or not to plant: When can planting facilitate mangrove restoration? Frontiers in Environmental Science, 9, 1 18. https://doi.org/10.3389/fenvs.2021.690011
  • Velmurugan, A., Swarnam, T. P., Ambast, S. K., & Kumar, N. (2016). managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agricultural Water Management, 168, 56 67. https://doi.org/10.1016/j.agwat.2016.01.020
  • Wunderlich, A.C., & Pinheiro, M.A.A. (2013). Mangrove habitat partitioning by ucides cordatus (ucididae): effects of the degree of tidal flooding and tree-species composition during its life cycle. Helgoland Marine Research, 67(2), 279 289. https://doi.org/10.1007/s10152-012-0322-3
  • Yang, L., Wen, K.-S.S., Ruan, X., Zhao, Y.-X. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. https://doi.org/10.3390/molecules23040762
  • Yu, L., Josey, S. A., Bingham, F. M., & Lee, T. (2020). Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Annals of the New York Academy of Sciences, 1472(1), 76–94. https://doi.org/10.1111/nyas.14354
  • Zhu, X., Huang, H., Luo, X., Wei, Y., Du, S., Yu, J., … Chen, L. (2023). Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance. Planta, 258(5), 100. https://doi.org/10.1007/s00425-023-04254-5

The effect of inundation levels on secondary metabolites accumulation in Avicennia marina (Forsk.) roots under different salinity regimes

Year 2025, Volume: 12 Issue: 2, 368 - 380

Abstract

Salinity and inundation are factors that affect secondary metabolites. This research aims to study the range of typical secondary metabolite content in Avicennia marina growing at different salinity levels, analyze the level of inundation that causes peak stress, and examine the impact of inundation stress on A. marina under different salinity regimes. This study used a 2-factor factorial complete randomized design, namely salinity level (15, 20, 25, 30, and 35 ppt), and inundation level (10, 15, and 20 cm). The parameters measured were tannin content, total alkaloids, and total phenols in A. marina roots analyzed by spectrophotometry method. Data were analyzed by ANOVA and further tested with DMRT test. The concentration range of tannins, total alkaloids, and total phenols was 14.29–18.45%, 0.893–1.331 mgQE/g, and 62.7–8.75 mgGAE/g, respectively. Peak stress-induced by inundation in A. marina indicated by high secondary metabolite contents was differentiated based on the salinity regime. Peak secondary metabolite content was obtained from the combination of salinity and inundation of 25 ppt + 20 cm, 20 ppt + 15 cm, and 15 ppt + 10 cm for tannin, total alkaloid, and total phenol content with values of 18.26±0.17%; 1.301±0.021 mgQE/g; and 83.98±2.02 mgGAE/g. The research found that simultaneous effect of salinity and inundation impacted for all metabolites. Our result suggests that salinity has underlying effect on total alkaloid and total phenol concentration in A. marina roots, but not tannin. Inundation significantly affects tannin content, amplifying its effects on total alkaloid and total phenol content.

Supporting Institution

Diponegoro University

Project Number

569-104/UN7.D2/PP/IV2023

References

  • Alhassan, A.B., & Aljahdali, M.O. (2021). Nutrient and Physicochemical Properties as Potential Causes of Stress in Mangroves of the Central Red Sea. PLOS ONE, 16(12), e0261620. https://doi.org/10.1371/journal.pone.0261620
  • Anderson, D.L., Ruggiero, P., Mendez, F.J., Barnard, P.L., Erikson, L.H., O’Neill, A.C., … Marra, J. (2021). Projecting Climate Dependent Coastal Flood Risk With A Hybrid Statistical Dynamical Model. Earth’s Future, 9(12), 1 24. https://doi.org/10.1029/2021EF002285
  • Barnuevo, A., & Asaeda, T. (2018). Integrating The Ecophysiology And Biochemical Stress Indicators Into The Paradigm Of Mangrove Ecology And A Rehabilitation Blueprint. PLOS ONE, 13(8), e0202227. https://doi.org/10.1371/journal.pone.0202227
  • Chambers, L.G., Guevara, R., Boyer, J.N., Troxler, T.G., & Davis, S.E. (2016). Effects of salinity and inundation on microbial community structure and function in a mangrove peat soil. Wetlands, 36(2), 361–371. https://doi.org/10.1007/s13157-016-0745-8
  • Cloern, J.E., Jassby, A.D., Schraga, T.S., Nejad, E., & Martin, C. (2017). Ecosystem variability along the estuarine salinity gradient: Examples from long‐term study of San Francisco bay. Limnology and Oceanography, 62(S1), S272–S291. https://doi.org/10.1002/lno.10537
  • Cui, M., Wang, Z., & Wang, B. (2022). Survival strategies of mangrove (Ceriops tagal (Perr.) C.B. Rob) and the inspired corrosion inhibitor. Frontiers in Materials, 9(June), 1–10. https://doi.org/10.3389/fmats.2022.879525
  • Di Nitto, D., Neukermans, G., Koedam, N., Defever, H., Pattyn, F., Kairo, J.G., & Dahdouh-Guebas, F. (2014). Mangroves facing climate change: landward migration potential in response to projected scenarios of sea level rise. Biogeosciences, 11(3), 857–871. https://doi.org/10.5194/bg-11-857-2014
  • Etongo, D., D’offay, K., Vel, T., Murugaiyan, P., & Henriette, E. (2022). Growth rate and survivorship of Rhizophora mucronata, Avicennia marina, and Ceriops tagal seedlings with freshwater and seawater treatment for mangrove propagation in nurseries. Applied Ecology and Environmental Research, 20(6), 5409 5431. https://doi.org/10.15666/aeer/2006_54095431
  • Gajula, H., Kumar, V., Vijendra, P.D., Rajashekar, J., Sannabommaji, T., & Basappa, G. (2020). Secondary metabolites from mangrove plants and their biological activities. In Biotechnological Utilization of Mangrove Resources (pp. 117 134). Elsevier. https://doi.org/10.1016/B978-0-12-819532-1.00005-6
  • Haigh, I.D. (2017). Tides and water levels. In J. Carlton, P. Jukes, & C.Y. Sang (Eds.), Encyclopedia of Maritime and Offshore Engineering (pp. 1–13). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118476406.emoe122
  • Hurmat, Shri, R., & Bansal, G. (2020). Does abiotic stresses enhance the production of secondary metabolites? A review. The Pharma Innovation Journal, 9(1), 412–422.
  • Jiménez-Martínez, J., García-Aróstegui, J.L., Hunink, J.E., Contreras, S., Baudron, P., & Candela, L. (2016). The role of groundwater in highly human-modified hydrosystems: A review of impacts and mitigation options in the campo de cartagena-mar menor coastal plain (SE Spain). Environmental Reviews, 24(4), 377–392. https://doi.org/10.1139/er-2015-0089
  • Li, B., Shi, X., Lian, L., Chen, Y., Chen, Z., & Sun, X. (2020). Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology, 584(February), 124684. https://doi.org/10.1016/j.jhydrol.2020.124684
  • Li, H., Li, Z., Shen, Z.-J., Luo, M.-R., Liu, Y.-L., Wei, M.-Y., … Zheng, H.-L. (2020). Physiological and proteomic responses of mangrove plant Avicennia marina seedlings to simulated periodical inundation. Plant and Soil, 450(1 2), 231 254. https://doi.org/10.1007/s11104-020-04474-8
  • Limaye, R.B., Kumaran, K.P.N., & Padmalal, D. (2014). Mangrove habitat dynamics in response to holocene sea level and climate changes along southwest coast of India. Quaternary International, 325, 116–125. https://doi.org/10.1016/j.quaint.2013.12.031
  • Liu, H., & Wei, Z. (2021). Intercomparison of global sea surface salinity from multiple datasets over 2011–2018. Remote Sensing, 13(4), 811. https://doi.org/10.3390/rs13040811
  • Luo, L., Wu, R., Gu, J.-D., Zhang, J., Deng, S., Zhang, Y., Wang, L., & He, Y. (2018). Influence of mangrove roots on microbial abundance and ecoenzyme activity in sediments of a subtropical coastal mangrove ecosystem. International Biodeterioration & Biodegradation, 132(April), 10–17. https://doi.org/10.1016/j.ibiod.2018.05.002
  • Mawdsley, R.J., Haigh, I.D., & Wells, N.C. (2015). Global secular changes in different tidal high water, low water and range levels. Earth’s Future, 3(2), 66 81. https://doi.org/10.1002/2014EF000282
  • Naidoo, G., & Naidoo, K. (2017). Are pioneer mangroves more vulnerable to oil pollution than later successional species? Marine Pollution Bulletin, 121(1 2), 135 142. https://doi.org/10.1016/j.marpolbul.2017.05.067
  • Pant, P., Pandey, S., & Dall’Acqua, S. (2021). The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chemistry & Biodiversity, 18(11). https://doi.org/10.1002/cbdv.202100345
  • Perri, S., Viola, F., Noto, L.V., & Molini, A. (2017). Salinity and periodic inundation controls on the soil-plant-atmosphere continuum of gray mangroves. Hydrological Processes, 31(6), 1271–1282. https://doi.org/10.1002/hyp.11095
  • Pichler, H.A., Gray, C.A., Broadhurst, M.K., Spach, H.L., & Nagelkerken, I. (2017). Seasonal and environmental influences on recruitment patterns and habitat usage among resident and transient fishes in a world heritage site subtropical estuary. Journal of Fish Biology, 90(1), 396–416. https://doi.org/10.1111/jfb.13191
  • Ravi, S., Young, T., Macinnis-Ng, C., Nyugen, T.V., Duxbury, M., Alfaro, A.C., & Leuzinger, S. (2020). Untargeted metabolomics in halophytes: the role of different metabolites in New Zealand mangroves under multi-factorial abiotic stress conditions. Environmental and Experimental Botany, 173(October 2019), 103993. https://doi.org/10.1016/j.envexpbot.2020.103993
  • Reshi, Z.A., Waquar A. Alexander S.L., Saad Bin Javed. (2023). From nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and In vitro approaches. Metabolites. 13(895). https://doi.org/10.3390/metabo13080895
  • Salmo, S., & Juanico, D.E. (2015). An individual-based model of long-term forest growth and carbon sequestration in planted mangroves under salinity and inundation stresses. International Journal of Philippine Science and Technology, 8(2), 31 35. https://doi.org/10.18191/2015-08-2-019
  • Sarvade, D.D., Gamit, R., Shukla, V.J., & Acharya, R. (2020). Quantification of total alkaloid, tannin, flavonoid, phenolic, and chlorogenic acid contents of Leea macrophyla roxb. ex hornem. International Journal of Green Pharmacy. 14(2), 138-145.
  • Shammi, M., Rahman, M.M., Islam, M.A., Bodrud-Doza, M., Zahid, A., Akter, Y., Quaiyum, S., & Kurasaki, M. (2017). Spatio-temporal assessment and trend analysis of surface water salinity in the coastal region of Bangladesh. Environmental Science and Pollution Research, 24(16), 14273–14290. https://doi.org/10.1007/s11356-017-8976-7
  • Sofian, A., Kusmana, C., Fauzi, A., & Rusdiana, O. (2019). Ecosystem services-based mangrove management strategies in Indonesia: A review. AACL Bioflux, 12(1), 151–166.
  • Tabasum, S., Khare, S., & Jain, K. (2016). Spectrophotometric quantiification of total phenolic, flavonoid, and alkaloid contents of Abrus precatorius L. seed. Asian Journal of Pharmaceutical and Clinical Research. 9(2), 371-374.
  • van Bijsterveldt, C.E.J., Debrot, A.O., Bouma, T.J., Maulana, M.B., Pribadi, R., Schop, J., Tonneijck, F.H., & van Wesenbeeck, B.K. (2022). to plant or not to plant: When can planting facilitate mangrove restoration? Frontiers in Environmental Science, 9, 1 18. https://doi.org/10.3389/fenvs.2021.690011
  • Velmurugan, A., Swarnam, T. P., Ambast, S. K., & Kumar, N. (2016). managing waterlogging and soil salinity with a permanent raised bed and furrow system in coastal lowlands of humid tropics. Agricultural Water Management, 168, 56 67. https://doi.org/10.1016/j.agwat.2016.01.020
  • Wunderlich, A.C., & Pinheiro, M.A.A. (2013). Mangrove habitat partitioning by ucides cordatus (ucididae): effects of the degree of tidal flooding and tree-species composition during its life cycle. Helgoland Marine Research, 67(2), 279 289. https://doi.org/10.1007/s10152-012-0322-3
  • Yang, L., Wen, K.-S.S., Ruan, X., Zhao, Y.-X. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. https://doi.org/10.3390/molecules23040762
  • Yu, L., Josey, S. A., Bingham, F. M., & Lee, T. (2020). Intensification of the global water cycle and evidence from ocean salinity: A synthesis review. Annals of the New York Academy of Sciences, 1472(1), 76–94. https://doi.org/10.1111/nyas.14354
  • Zhu, X., Huang, H., Luo, X., Wei, Y., Du, S., Yu, J., … Chen, L. (2023). Condensed tannin accretions specifically distributed in mesophyll cells of non-salt secretor mangroves help in salt tolerance. Planta, 258(5), 100. https://doi.org/10.1007/s00425-023-04254-5
There are 35 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Botany (Other)
Journal Section Articles
Authors

Endah Dwi Hastuti 0000-0002-9923-1110

Erma Prihastanti 0000-0001-6294-9113

Project Number 569-104/UN7.D2/PP/IV2023
Early Pub Date March 19, 2025
Publication Date
Submission Date May 15, 2024
Acceptance Date January 11, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Hastuti, E. D., & Prihastanti, E. (2025). The effect of inundation levels on secondary metabolites accumulation in Avicennia marina (Forsk.) roots under different salinity regimes. International Journal of Secondary Metabolite, 12(2), 368-380.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905