Research Article
BibTex RIS Cite

Investigation of the antimicrobial and antibiofilm effect of plant Consolida orientalis on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus sp. (VRE)

Year 2025, Volume: 12 Issue: 2, 343 - 354

Abstract

This study was planned to investigate the antimicrobial and antibiofilm effects of Consolida orientalis on MRSA and VRE. MRSA and VRE strains isolated from patients admitted to Sivas Cumhuriyet University Medical Faculty Practice and Research Hospital were used in the study. The antimicrobial activity of C. orientalis was investigated by microdilution broth method, biofilm formation activity of microorganisms by spectrophotometric plate method and antibiofilm activity of plant extract by microtiter plate method. According to the results, MRSA strains had Minimum Inhibitory Concentration (MIC) values between 0.15 and >5 mg/mL while VRE strains had MIC values between 0.625 and 2.5 mg/mL. Twenty MRSA strains were observed to form biofilm at various levels, 8 of which were strong, 10 were moderate and 2 were weak. Sixteen strains formed biofilms, 1 of which was strong, 15 of which was weak, and 4 strains did not form biofilms. In conclusion, C. orientalis plant extract showed moderate to weak antimicrobial activity against MRSA and VRE pathogens. The presence of the substance 2-ethylacridine, which is hypothesised to possess anti-biofilm properties, was identified in the plant extract through the utilisation of gas chromatography/mass spectrometry (GC/MS) analysis. The extract was also found to inhibit biofilm and eradicate bacteria at various levels.

Ethical Statement

Sivas Cumhuriyet University Non-Interventional Clinical Research Ethics Committee's decision dated 07.08.2019 and numbered 2019-08/10.

References

  • Adukwu, E.C., Allen, S.C.H., & Phillips, C.A. (2012). The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. Journal of Applied Microbiology, 113(5), 1217 1227. https://doi.org/10.1111/j.1365-2672.2012.05418.x
  • Alıç, H. (2015). Investigation of antimicrobial, antibiofilm, antioxidant and quorum quenching activities of propolis samples from the Muğla region [Unpublished master thesis]. Muğla Sıtkı Koçman University.
  • Arias, C.A., & Murray, B.E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266 278. https://doi.org/10.1038/nrmicro2761
  • Arslan, A. (2019). Investigation of pollen, seed, fruit morphology and antimicrobial and antibiofilm activity of some Alyssum L. species in Anatolian flora [Unpublished master thesis]. Bartın University.
  • Atalan, E. (2019). Investigation of antioxidant, antimicrobial, antifungal, antibiofilm, properties and seed morphology of cephalaria [Cephalaria syriaca (L.)] plant grown in Turkey [Unpublished master thesis]. Bartın University.
  • Avşar, C., Keskin, H., & Berber, İ. (2016). Antimicrobial activity of some plant extracts against microorganisms isolated from hospital infections. International Journal of Pure and Applied Sciences, 2(1), 22–29.
  • Awouafack, M.D., Tane, P., Kuete, V., & Eloff, J.N. (2013). Sesquiterpenes from the medicinal plants of Africa. In Medicinal plant research in Africa (pp. 33–103). Elsevier.
  • Balaban, M. (2018). Investigation of antibiofilm effects of fruit waste extracts [Unpublished master thesis]. Gebze Technical University.
  • Bazargani, M.M., & Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156–164. https://doi.org/10.1016/j.foodcont.2015.09.036
  • Celik, C., Tutar, U., Karaman, I., Hepokur, C., & Atas, M. (2015). Evaluation of the antibiofilm and antimicrobial properties of Ziziphora tenuior L. Essential oil against multidrug-resistant Acinetobacter baumannii. International Journal of Pharmacology, 12(1), 28 35. https://doi.org/10.3923/ijp.2016.28.35
  • Chusri, S., Phatthalung, P.N., & Voravuthikunchai, S.P. (2012). Anti-biofilm activity of Quercus infectoria G. Olivier against methicillin-resistant Staphylococcus aureus. Letters in Applied Microbiology, 54(6), 511–517. https://doi.org/10.1111/j.1472-765X.2012.03236.x
  • CLSI (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 12th ed. CLSI standard M07. Clinical and Laboratory Standards Institute. https://clsi.org/media/gukhkq1c/m07ed12e_sample.pdf
  • Cruz, C.D., Shah, S., & Tammela, P. (2018). Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiology, 18(1), 1–9. https://doi.org/10.1186/s12866-018-1321-6n
  • Das, A. (May 9, 2021). Researchgate. Re: Should the antibiofilm concentration be equal to the MIC? https://www.researchgate.net/post/should_the_antibiofilm_concentration_be_equal_to_the_MIC/5a70183ced99e1506e72ebe6/citation/download
  • Donlan, R.M., & Costerton, J.W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167 193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  • Erdoğan, A.E., & Everest, A. (2013). The Component of Plant as Antimicrobial Agent. Türk Bilimsel Derlemeler Dergisi, 6(2), 27–32.
  • Erdönmez, D., Kenar, N., & Erkan Türkmen, K. (2018). Screening for antı-quorum sensing and anti-biofilm activity in Viscum album L. extracts and its biochemical composition. Trakya University Journal of Natural Sciences, 19(2), 175 186. https://doi.org/10.23902/trkjnat.369911
  • Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff, J.N., & McGaw, L.J. (2019). Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1), 1–13. https://doi.org/10.1186/s12906-019-2547-z
  • García-Solache, M., & Rice, L.B. (2019). The enterococcus: A model of adaptability to its environment. Clinical Microbiology Reviews, 32(2), 1 28. https://doi.org/10.1128/CMR.00058-18
  • Göse, M. (2019). Investigation of antimicrobial and antibiofilm activities of two Verbascum species [Unpublished master thesis]. Çanakkale Onsekiz Mart University.
  • Haiyan, G., Lijuan, H., Shaoyu, L., Chen, Z., & Ashraf, M.A. (2016). Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi Journal of Biological Sciences, 23(4), 524 530. https://doi.org/10.1016/j.sjbs.2016.02.020
  • İlkimen, H., & Gülbandılar, A. (2018). Investigation of antimicrobial effects of lavender, sage tea, thyme and chamomile. Türk Mikrobiyoloji Cemiyeti Dergisi, 48(4), 241 246. https://doi.org/10.5222/tmcd.2018.241
  • Karaca, B., Akata, I., & Çöleri Cihan, A. (2017). Antimicrobial and antibiofilm activities of Lentinus edodes, Lactarious delicious, and Ganoderma lucidum. Kastamonu University Journal of Faculty of Forestry, December, 660 668. https://doi.org/10.17475/kastorman.341971
  • Kim, N.N., Kim, W.J., & Kang, S.S. (2019). Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella typhimurium. Food Control, 98(March 2018), 274–280. https://doi.org/10.1016/j.foodcont.2018.11.004
  • Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76(14), 1479–1491. https://doi.org/10.1055/s-0030-1250027
  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), 10-1128.
  • Maregesi, S.M., Pieters, L., Ngassapa, O.D., Apers, S., Vingerhoets, R., Cos, P., Berghe, D.A. Vanden, & Vlietinck, A.J. (2008). Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. Journal of Ethnopharmacology, 119(1), 58–66. https://doi.org/https://doi.org/10.1016/j.jep.2008. 05.033
  • Merghni, A., Marzouki, H., Hentati, H., Aouni, M., & Mastouri, M. (2016). Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Current Research in Translational Medicine, 64(1), 29–34. https://doi.org/10.1016/j.patbio.2015.10.003
  • Nadaf, N.H., Parulekar, R.S., Patil, R.S., Gade, T.K., Momin, A.A., Waghmare, S.R., … Sonawane, K.D. (2018). Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. Journal of Ethnopharmacology, 222(April), 121 132. https://doi.org/10.1016/j.jep.2018.04.031
  • Nostro, A., Roccaro, A.S., Bisignano, G., Marino, A., Cannatelli, M.A., Pizzimenti, F.C., … Blanco, A.R. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology, 56(4), 519–523. https://doi.org/10.1099/jmm.0.46804-0
  • Onsare, J.G., & Arora, D.S. (2015). Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Journal of Applied Microbiology, 118(2), 313 325. https://doi.org/10.1111/jam.12701
  • Özpınar, N. (2020). Amoebicidal activity of Consolida orientalis (Gay.) Schröd. on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. International Journal of Academic Medicine and Pharmacy, 2(1), 34–39.
  • Öztürk, Ş.B., Sakarya, S., Öncü, S., & Ertuğrul, M.B. (2008). Biofilms and foreign body infections. Klimik Dergisi, 21(3), 79–86.
  • Quave, C.L., Plano, L.R.W., Pantuso, T., & Bennett, B.C. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118(3), 418–428. https://doi.org/10.1016/j.jep.2008.05.005
  • Rahdari, P., Dehpour Joybari, A.A., & Roudgar Kohpar, M.A. (2010). Identification of essential oil’s combination and study of antibacterial effects of Consolida Orientalis Species. Natural Ecosystems of Iran, 1(1), 85–90.
  • Rocchetti, G., Zengin, G., Cakmak, Y.S., Mahomoodally, M.F., Kaya, M.F., Alsheikh, S.M., … Lucini, L. (2020). A UHPLC-QTOF-MS screening provides new insights into the phytochemical composition and biological properties of six Consolida species from Turkey. Industrial Crops and Products, 158(April), 112966. https://doi.org/10.1016/j.indcrop.2020.112966
  • Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554. https://doi.org/10.1080/21505594.2017.1313372
  • Sandasi, M., Leonard, C.M., Van Vuuren, S.F., & Viljoen, A.M. (2011). Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. South African Journal of Botany, 77(1), 80–85. https://doi.org/10.1016/j.sajb.2010.05.011
  • Selim, S.A., Adam, M.E., Hassan, S.M., & Albalawi, A.R. (2014). Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.) BMC Complementary and Alternative Medicine, 14(179).
  • Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115(8), 891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • Taşdemir, S. (2017). Investigations on antibacterial and antibiofilm effects of some honey types produced in Turkey on the isolates of Pseudomonas aeruginosa [Unpublished master thesis]. Ondokuz Mayıs University.
  • Taweechaisupapong, S., Ngaonee, P., Patsuk, P., Pitiphat, W., & Khunkitti, W. (2012). Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. South African Journal of Botany, 78, 37 43. https://doi.org/10.1016/j.sajb.2011.04.003
  • Tong, S.Y.C., Davis, J.S., Eichenberger, E., Holland, T.L., & Fowler, V.G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603 661. https://doi.org/10.1128/CMR.00134-14
  • Tozyılmaz, V. (2019). Investigation of antimicrobial, antioxidant and antibiofilm activities of some endemic species in Anatolian flora [Unpublished master thesis]. Bartın University.
  • Truchado, P., Larrosa, M., Castro-Ibáñez, I., & Allende, A. (2015). Plant food extracts and phytochemicals: Their role as Quorum Sensing Inhibitors. Trends in Food Science and Technology, 43(2), 189–204. https://doi.org/10.1016/j.tifs.2015.02.009
  • Tutar, U. (2018). Investigation of antibacterial and anti-biofilm activity of Thymbra spicata essential oil on multidrug- resistant Pseudomonas aeruginosa strains. Cumhuriyet Science Journal, 39(3), 650–657. https://doi.org/http://dx.doi.org/10.17776/csj.356185
  • Viju, N., Punitha, S.M.J., & Satheesh, S. (2020). Antibiofilm activity of symbiotic Bacillus species associated with marine gastropods. Annals of Microbiology, 70(1). https://doi.org/10.1186/s13213-020-01554-z
  • Yahya, M.F.Z.R., Saifuddin, N.F.H.A., & Hamid, U.M.A. (2013). Zingiber officinale ethanolic extract inhibits formation of Pseudomonas aeruginosa biofilm. International Journal of Pharmacy and Biological Sciences, January 2013. www.ijpbsonline.com
  • Yetgin, A., Şenturan, M., Benek, A., Efe, E., & Canlı, K. (2017). Determination of antimicrobial activity of Pterigynandrum filiforme Hedw. Anatolian Bryology, 3(1), 43–47.
  • Yin, T., Cai, L., & Ding, Z. (2020). A systematic review on the chemical constituents of the genus Consolida (Ranunculaceae) and their biological activities. RSC Advances, 10(58), 35072-35089.

Investigation of the antimicrobial and antibiofilm effect of plant Consolida orientalis on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus sp. (VRE)

Year 2025, Volume: 12 Issue: 2, 343 - 354

Abstract

This study was planned to investigate the antimicrobial and antibiofilm effects of Consolida orientalis on MRSA and VRE. MRSA and VRE strains isolated from patients admitted to Sivas Cumhuriyet University Medical Faculty Practice and Research Hospital were used in the study. The antimicrobial activity of C. orientalis was investigated by microdilution broth method, biofilm formation activity of microorganisms by spectrophotometric plate method and antibiofilm activity of plant extract by microtiter plate method. According to the results, MRSA strains had Minimum Inhibitory Concentration (MIC) values between 0.15 and >5 mg/mL while VRE strains had MIC values between 0.625 and 2.5 mg/mL. Twenty MRSA strains were observed to form biofilm at various levels, 8 of which were strong, 10 were moderate and 2 were weak. Sixteen strains formed biofilms, 1 of which was strong, 15 of which was weak, and 4 strains did not form biofilms. In conclusion, C. orientalis plant extract showed moderate to weak antimicrobial activity against MRSA and VRE pathogens. The presence of the substance 2-ethylacridine, which is hypothesised to possess anti-biofilm properties, was identified in the plant extract through the utilisation of gas chromatography/mass spectrometry (GC/MS) analysis. The extract was also found to inhibit biofilm and eradicate bacteria at various levels.

Ethical Statement

Sivas Cumhuriyet University Non-Interventional Clinical Research Ethics Committee's decision dated 07.08.2019 and numbered 2019-08/10.

References

  • Adukwu, E.C., Allen, S.C.H., & Phillips, C.A. (2012). The anti-biofilm activity of lemongrass (Cymbopogon flexuosus) and grapefruit (Citrus paradisi) essential oils against five strains of Staphylococcus aureus. Journal of Applied Microbiology, 113(5), 1217 1227. https://doi.org/10.1111/j.1365-2672.2012.05418.x
  • Alıç, H. (2015). Investigation of antimicrobial, antibiofilm, antioxidant and quorum quenching activities of propolis samples from the Muğla region [Unpublished master thesis]. Muğla Sıtkı Koçman University.
  • Arias, C.A., & Murray, B.E. (2012). The rise of the Enterococcus: Beyond vancomycin resistance. Nature Reviews Microbiology, 10(4), 266 278. https://doi.org/10.1038/nrmicro2761
  • Arslan, A. (2019). Investigation of pollen, seed, fruit morphology and antimicrobial and antibiofilm activity of some Alyssum L. species in Anatolian flora [Unpublished master thesis]. Bartın University.
  • Atalan, E. (2019). Investigation of antioxidant, antimicrobial, antifungal, antibiofilm, properties and seed morphology of cephalaria [Cephalaria syriaca (L.)] plant grown in Turkey [Unpublished master thesis]. Bartın University.
  • Avşar, C., Keskin, H., & Berber, İ. (2016). Antimicrobial activity of some plant extracts against microorganisms isolated from hospital infections. International Journal of Pure and Applied Sciences, 2(1), 22–29.
  • Awouafack, M.D., Tane, P., Kuete, V., & Eloff, J.N. (2013). Sesquiterpenes from the medicinal plants of Africa. In Medicinal plant research in Africa (pp. 33–103). Elsevier.
  • Balaban, M. (2018). Investigation of antibiofilm effects of fruit waste extracts [Unpublished master thesis]. Gebze Technical University.
  • Bazargani, M.M., & Rohloff, J. (2016). Antibiofilm activity of essential oils and plant extracts against Staphylococcus aureus and Escherichia coli biofilms. Food Control, 61, 156–164. https://doi.org/10.1016/j.foodcont.2015.09.036
  • Celik, C., Tutar, U., Karaman, I., Hepokur, C., & Atas, M. (2015). Evaluation of the antibiofilm and antimicrobial properties of Ziziphora tenuior L. Essential oil against multidrug-resistant Acinetobacter baumannii. International Journal of Pharmacology, 12(1), 28 35. https://doi.org/10.3923/ijp.2016.28.35
  • Chusri, S., Phatthalung, P.N., & Voravuthikunchai, S.P. (2012). Anti-biofilm activity of Quercus infectoria G. Olivier against methicillin-resistant Staphylococcus aureus. Letters in Applied Microbiology, 54(6), 511–517. https://doi.org/10.1111/j.1472-765X.2012.03236.x
  • CLSI (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 12th ed. CLSI standard M07. Clinical and Laboratory Standards Institute. https://clsi.org/media/gukhkq1c/m07ed12e_sample.pdf
  • Cruz, C.D., Shah, S., & Tammela, P. (2018). Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiology, 18(1), 1–9. https://doi.org/10.1186/s12866-018-1321-6n
  • Das, A. (May 9, 2021). Researchgate. Re: Should the antibiofilm concentration be equal to the MIC? https://www.researchgate.net/post/should_the_antibiofilm_concentration_be_equal_to_the_MIC/5a70183ced99e1506e72ebe6/citation/download
  • Donlan, R.M., & Costerton, J.W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167 193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  • Erdoğan, A.E., & Everest, A. (2013). The Component of Plant as Antimicrobial Agent. Türk Bilimsel Derlemeler Dergisi, 6(2), 27–32.
  • Erdönmez, D., Kenar, N., & Erkan Türkmen, K. (2018). Screening for antı-quorum sensing and anti-biofilm activity in Viscum album L. extracts and its biochemical composition. Trakya University Journal of Natural Sciences, 19(2), 175 186. https://doi.org/10.23902/trkjnat.369911
  • Famuyide, I.M., Aro, A.O., Fasina, F.O., Eloff, J.N., & McGaw, L.J. (2019). Antibacterial and antibiofilm activity of acetone leaf extracts of nine under-investigated south African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complementary and Alternative Medicine, 19(1), 1–13. https://doi.org/10.1186/s12906-019-2547-z
  • García-Solache, M., & Rice, L.B. (2019). The enterococcus: A model of adaptability to its environment. Clinical Microbiology Reviews, 32(2), 1 28. https://doi.org/10.1128/CMR.00058-18
  • Göse, M. (2019). Investigation of antimicrobial and antibiofilm activities of two Verbascum species [Unpublished master thesis]. Çanakkale Onsekiz Mart University.
  • Haiyan, G., Lijuan, H., Shaoyu, L., Chen, Z., & Ashraf, M.A. (2016). Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi Journal of Biological Sciences, 23(4), 524 530. https://doi.org/10.1016/j.sjbs.2016.02.020
  • İlkimen, H., & Gülbandılar, A. (2018). Investigation of antimicrobial effects of lavender, sage tea, thyme and chamomile. Türk Mikrobiyoloji Cemiyeti Dergisi, 48(4), 241 246. https://doi.org/10.5222/tmcd.2018.241
  • Karaca, B., Akata, I., & Çöleri Cihan, A. (2017). Antimicrobial and antibiofilm activities of Lentinus edodes, Lactarious delicious, and Ganoderma lucidum. Kastamonu University Journal of Faculty of Forestry, December, 660 668. https://doi.org/10.17475/kastorman.341971
  • Kim, N.N., Kim, W.J., & Kang, S.S. (2019). Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella typhimurium. Food Control, 98(March 2018), 274–280. https://doi.org/10.1016/j.foodcont.2018.11.004
  • Kuete, V. (2010). Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Medica, 76(14), 1479–1491. https://doi.org/10.1055/s-0030-1250027
  • Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31(4), 10-1128.
  • Maregesi, S.M., Pieters, L., Ngassapa, O.D., Apers, S., Vingerhoets, R., Cos, P., Berghe, D.A. Vanden, & Vlietinck, A.J. (2008). Screening of some Tanzanian medicinal plants from Bunda district for antibacterial, antifungal and antiviral activities. Journal of Ethnopharmacology, 119(1), 58–66. https://doi.org/https://doi.org/10.1016/j.jep.2008. 05.033
  • Merghni, A., Marzouki, H., Hentati, H., Aouni, M., & Mastouri, M. (2016). Antibacterial and antibiofilm activities of Laurus nobilis L. essential oil against Staphylococcus aureus strains associated with oral infections. Current Research in Translational Medicine, 64(1), 29–34. https://doi.org/10.1016/j.patbio.2015.10.003
  • Nadaf, N.H., Parulekar, R.S., Patil, R.S., Gade, T.K., Momin, A.A., Waghmare, S.R., … Sonawane, K.D. (2018). Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. Journal of Ethnopharmacology, 222(April), 121 132. https://doi.org/10.1016/j.jep.2018.04.031
  • Nostro, A., Roccaro, A.S., Bisignano, G., Marino, A., Cannatelli, M.A., Pizzimenti, F.C., … Blanco, A.R. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. Journal of Medical Microbiology, 56(4), 519–523. https://doi.org/10.1099/jmm.0.46804-0
  • Onsare, J.G., & Arora, D.S. (2015). Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Journal of Applied Microbiology, 118(2), 313 325. https://doi.org/10.1111/jam.12701
  • Özpınar, N. (2020). Amoebicidal activity of Consolida orientalis (Gay.) Schröd. on Acanthamoeba castellanii cysts and trophozoites and its cytotoxic potentials. International Journal of Academic Medicine and Pharmacy, 2(1), 34–39.
  • Öztürk, Ş.B., Sakarya, S., Öncü, S., & Ertuğrul, M.B. (2008). Biofilms and foreign body infections. Klimik Dergisi, 21(3), 79–86.
  • Quave, C.L., Plano, L.R.W., Pantuso, T., & Bennett, B.C. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118(3), 418–428. https://doi.org/10.1016/j.jep.2008.05.005
  • Rahdari, P., Dehpour Joybari, A.A., & Roudgar Kohpar, M.A. (2010). Identification of essential oil’s combination and study of antibacterial effects of Consolida Orientalis Species. Natural Ecosystems of Iran, 1(1), 85–90.
  • Rocchetti, G., Zengin, G., Cakmak, Y.S., Mahomoodally, M.F., Kaya, M.F., Alsheikh, S.M., … Lucini, L. (2020). A UHPLC-QTOF-MS screening provides new insights into the phytochemical composition and biological properties of six Consolida species from Turkey. Industrial Crops and Products, 158(April), 112966. https://doi.org/10.1016/j.indcrop.2020.112966
  • Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554. https://doi.org/10.1080/21505594.2017.1313372
  • Sandasi, M., Leonard, C.M., Van Vuuren, S.F., & Viljoen, A.M. (2011). Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. South African Journal of Botany, 77(1), 80–85. https://doi.org/10.1016/j.sajb.2010.05.011
  • Selim, S.A., Adam, M.E., Hassan, S.M., & Albalawi, A.R. (2014). Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.) BMC Complementary and Alternative Medicine, 14(179).
  • Stepanović, S., Vuković, D., Hola, V., Di Bonaventura, G., Djukić, S., Ćirković, I., & Ruzicka, F. (2007). Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS, 115(8), 891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x
  • Taşdemir, S. (2017). Investigations on antibacterial and antibiofilm effects of some honey types produced in Turkey on the isolates of Pseudomonas aeruginosa [Unpublished master thesis]. Ondokuz Mayıs University.
  • Taweechaisupapong, S., Ngaonee, P., Patsuk, P., Pitiphat, W., & Khunkitti, W. (2012). Antibiofilm activity and post antifungal effect of lemongrass oil on clinical Candida dubliniensis isolate. South African Journal of Botany, 78, 37 43. https://doi.org/10.1016/j.sajb.2011.04.003
  • Tong, S.Y.C., Davis, J.S., Eichenberger, E., Holland, T.L., & Fowler, V.G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603 661. https://doi.org/10.1128/CMR.00134-14
  • Tozyılmaz, V. (2019). Investigation of antimicrobial, antioxidant and antibiofilm activities of some endemic species in Anatolian flora [Unpublished master thesis]. Bartın University.
  • Truchado, P., Larrosa, M., Castro-Ibáñez, I., & Allende, A. (2015). Plant food extracts and phytochemicals: Their role as Quorum Sensing Inhibitors. Trends in Food Science and Technology, 43(2), 189–204. https://doi.org/10.1016/j.tifs.2015.02.009
  • Tutar, U. (2018). Investigation of antibacterial and anti-biofilm activity of Thymbra spicata essential oil on multidrug- resistant Pseudomonas aeruginosa strains. Cumhuriyet Science Journal, 39(3), 650–657. https://doi.org/http://dx.doi.org/10.17776/csj.356185
  • Viju, N., Punitha, S.M.J., & Satheesh, S. (2020). Antibiofilm activity of symbiotic Bacillus species associated with marine gastropods. Annals of Microbiology, 70(1). https://doi.org/10.1186/s13213-020-01554-z
  • Yahya, M.F.Z.R., Saifuddin, N.F.H.A., & Hamid, U.M.A. (2013). Zingiber officinale ethanolic extract inhibits formation of Pseudomonas aeruginosa biofilm. International Journal of Pharmacy and Biological Sciences, January 2013. www.ijpbsonline.com
  • Yetgin, A., Şenturan, M., Benek, A., Efe, E., & Canlı, K. (2017). Determination of antimicrobial activity of Pterigynandrum filiforme Hedw. Anatolian Bryology, 3(1), 43–47.
  • Yin, T., Cai, L., & Ding, Z. (2020). A systematic review on the chemical constituents of the genus Consolida (Ranunculaceae) and their biological activities. RSC Advances, 10(58), 35072-35089.
There are 50 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Articles
Authors

Gonca Şimşek 0000-0001-6165-1614

Ömer Poyraz 0000-0001-5717-0252

Early Pub Date March 19, 2025
Publication Date
Submission Date July 1, 2024
Acceptance Date November 16, 2024
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Şimşek, G., & Poyraz, Ö. (2025). Investigation of the antimicrobial and antibiofilm effect of plant Consolida orientalis on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Enterococcus sp. (VRE). International Journal of Secondary Metabolite, 12(2), 343-354.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905