Research Article
BibTex RIS Cite

Biological activities of silver nanoparticles synthesized using Olea europaea L. leaves

Year 2025, Volume: 12 Issue: 2, 289 - 296

Abstract

Recent advancements in nanotechnology have led to an increased utilization of silver nanoparticles (AgNPs) across various domains, including health, medicine, environmental chemistry, nanobiotechnology, and biosensors. The primary focus of this study is the green synthesis of AgNPs utilizing Olea europaea L. leaves. AgNP was characterized through UV-Vis Spectroscopy, SEM, EDS, and TEM. Furthermore, the study explored the antimicrobial, antibiofilm, and antioxidant activities, along with the growth kinetics of Staphylococcus aureus ATCC 25923, for the synthesized AgNPs. Characterization tests confirmed the synthesis of spherical nanoparticles with a size ranging from 51 to 56 nm. AgNPs demonstrated effectiveness, particularly against Acinetobacter baumannii ATCC 19606 and Proteus vulgaris ATCC 13315 bacteria, in terms of antimicrobial and antibiofilm activities. Moreover, the AgNPs exhibited noteworthy antioxidant activity. This study provides evidence that this environmentally friendly and cost-effective method can be applied for large-scale AgNP synthesis

Thanks

This research is a part of Özge CEYLAN’s Master Thesis. We would like to thank Atatürk University East Anatolian High Technology Application and Research Center (DAYTAM) for characterization of AgNPs. The authors are thankful Assoc.Prof. Dr. Neslihan GÜLEÇ for support this research.

References

  • Alsulami, J.A., Perveen, K., & Alothman, M.R., (2023). Microwave assisted green synthesis of silver nanoparticles by extracts of fig fruits and myrrh oleogum resin and their role in antibacterial activity. Journal of King Saud University Science, 35(10). 1 9. https://doi.org/10.1016/j.jksus.2023.102959
  • Atalar, M.N., Baran, A., Baran, M.F., Keskin, C., Aktepe, N., Yavuz, Ö., & Kandemir, S.İ., (2022). Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Particulate Science and Technology, An International Journal, 40(5), 589-597. https://doi.org/10.1080/02726351.2021.1977443
  • Barzinjy, A.A., & Haji, B.S., (2024). Green synthesis and characterization of Ag nanoparticles using fresh and dry Portulaca oleracea leaf extracts: enhancing light reflectivity properties of ITO glass. Micro & Nano Letters, 19(3), 1-13. https://doi.org/10.1049/mna2.12198
  • Bayğu, G. (2020). Determination of genotoxic effect of silver nanoparticle obtained from green synthesis method using cimin grape leaf by wing spot test [Unpublished Master Thesis]. Erzincan Binali Yıldırım University.
  • Blois, M.S., (1958). Antioxidant determinations by the use of a stable free radical. Nature, 26, 1199–1200.
  • Boisseau, P., & Loubaton, B., (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12, 620-636. https://doi.org/10.1016/j.crhy.2011.06.001
  • Bonvino, N.P., Liang, J., McCord, E., (2018). DOliveNet™: a comprehensive library of compounds from Olea europaea, Database, 2018.
  • CLSI (Clinical and Laboratory Standards Institute) (2006). Performance standards for antimicrobial susceptibility testing. Sixteenth Informational Supplement.
  • De Matteis, V., Rizzello, L., Ingrosso, C., Liatsi-Douvitsa, E., De Giorgi, M.L., De Matteis, G., & Rinaldi, R., (2019). Cultivar-Dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different Olea europaea trees. Nanomaterials, 9(11), 1544. https://doi.org/10.3390/nano9111544
  • Erci, F., (2018). Evaluation of antimicrobial and antibiofilm activity of green synthesized metal nanoparticles [Unpublished Phd Thesis]. Yıldız Teknik University.
  • Erdoğan, O., Abbak, M., Demirbolat, G. M., Birtekoçak, F., Aksel, M., Paşa, S., & Çevik, O., (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One, 14(6), e0216496. https://doi.org/10.1371/journal.pone.0216496
  • Karakaş, İ., Sağır, L. B., Hacıoğlu Doğru, N., (2023a). Biological activities of green synthesis silver nanoparticles by Plantago lanceolata L. leaves. GSC Biological and Pharmaceutical Sciences, 22(2), 290-296. https://doi.org/10.30574/gscbps.2023.22.2.0079
  • Karakaş, İ., Hacıoğlu Doğru, N. (2023b). Some biological potential of silver nanoparticles synthesized from Ocimum basilicum L.. GSC Biological and Pharmaceutical Sciences, 22(3), 107-113. https://doi.org/10.30574/gscbps.2023.22.3.0099
  • Khan, A.U., Khan, A.U., Li, B., Mahnashi, M.H., Alyami, B.A., Alqahtani, Y.S., … Wasim, M., (2021). Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagnosis Photodyn, 33, 102153. https://doi.org/10.1016/j.pdpdt.2020.102153
  • Klueh, U., Wagner, V., Kelly, S., Johnson, A., & Bryers, J., (2000). Efficacy of silver‐coated fabric to prevent bacterial colonization and subsequent device‐based biofilm formation. Journal of Biomedical Materials Research Part A, 53, 621 631. https://doi.org/10.1002/1097-4636(2000)53:6<621::aid-jbm2>3.0.co;2-q
  • O'Toole, G.A., (2011). Microtiter dish biofilm formation assay. Journal of Visualized Experiment, 30(47), 2437. https://doi.org/10.3791/2437
  • Özcan, M.M., & Matthäus, B., (2017). A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol, 243, 89-99. https://doi.org/0.1007/s00217-016-2726-9
  • Piro, N.S., Hamad, S.M., Mohammed, A.S., Barzinjy, A.A., (2023). Green synthesis magnetite (Fe3O4) nanoparticles from Rhus coriaria extract: a characteristic comparison with a conventional chemical method. IEEE Transactions on Nanobioscience, 22(2), 308–317.
  • Rahimzadeh, C.Y., Barzinjy, A.A., Mohammed, A.S., Hamad, S.M., (2022). Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: comparison with chemically synthesized SiO2 nanoparticles. PloS One, 17(8), 1 15. https://doi.org/10.1371/journal.pone.0268184
  • Salık, M.A., & Çakmakçı, S. (2021). Zeytin (Olea europaea L.) yaprağının fonksiyonel özellikleri ve gıdalarda kullanım potansiyeli [Functional properties of olive (Olea europaea L.) leaf and its usage capacity in foods]. Gıda, 46(6), 1481-1493.
  • Sellami, H., Khan, S.A., Ahmad, I., Alarfaj, A.A., Hirad, A.H., & Al-Sabri, A.E., (2021). Green synthesis of silver nanoparticles using Olea europaea leaf extract for their enhanced antibacterial, antioxidant, cytotoxic and biocompatibility applications. International Journal of Molecule Sciences, 22(22), 1-16. https://doi.org/10.3390/ijms222212562
  • Veisi, H., Dadres, N., Mohammadi, P., & Hemmati, S., (2019). Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 couplin. Materials Science and Engineering: C, 105, 110031. https://doi.org/10.1016/j.msec.2019.110031

Biological activities of silver nanoparticles synthesized using Olea europaea L. leaves

Year 2025, Volume: 12 Issue: 2, 289 - 296

Abstract

Recent advancements in nanotechnology have led to an increased utilization of silver nanoparticles (AgNPs) across various domains, including health, medicine, environmental chemistry, nanobiotechnology, and biosensors. The primary focus of this study is the green synthesis of AgNPs utilizing Olea europaea L. leaves. AgNP was characterized through UV-Vis Spectroscopy, SEM, EDS, and TEM. Furthermore, the study explored the antimicrobial, antibiofilm, and antioxidant activities, along with the growth kinetics of Staphylococcus aureus ATCC 25923, for the synthesized AgNPs. Characterization tests confirmed the synthesis of spherical nanoparticles with a size ranging from 51 to 56 nm. AgNPs demonstrated effectiveness, particularly against Acinetobacter baumannii ATCC 19606 and Proteus vulgaris ATCC 13315 bacteria, in terms of antimicrobial and antibiofilm activities. Moreover, the AgNPs exhibited noteworthy antioxidant activity. This study provides evidence that this environmentally friendly and cost-effective method can be applied for large-scale AgNP synthesis

References

  • Alsulami, J.A., Perveen, K., & Alothman, M.R., (2023). Microwave assisted green synthesis of silver nanoparticles by extracts of fig fruits and myrrh oleogum resin and their role in antibacterial activity. Journal of King Saud University Science, 35(10). 1 9. https://doi.org/10.1016/j.jksus.2023.102959
  • Atalar, M.N., Baran, A., Baran, M.F., Keskin, C., Aktepe, N., Yavuz, Ö., & Kandemir, S.İ., (2022). Economic fast synthesis of olive leaf extract and silver nanoparticles and biomedical applications. Particulate Science and Technology, An International Journal, 40(5), 589-597. https://doi.org/10.1080/02726351.2021.1977443
  • Barzinjy, A.A., & Haji, B.S., (2024). Green synthesis and characterization of Ag nanoparticles using fresh and dry Portulaca oleracea leaf extracts: enhancing light reflectivity properties of ITO glass. Micro & Nano Letters, 19(3), 1-13. https://doi.org/10.1049/mna2.12198
  • Bayğu, G. (2020). Determination of genotoxic effect of silver nanoparticle obtained from green synthesis method using cimin grape leaf by wing spot test [Unpublished Master Thesis]. Erzincan Binali Yıldırım University.
  • Blois, M.S., (1958). Antioxidant determinations by the use of a stable free radical. Nature, 26, 1199–1200.
  • Boisseau, P., & Loubaton, B., (2011). Nanomedicine, nanotechnology in medicine. Comptes Rendus Physique, 12, 620-636. https://doi.org/10.1016/j.crhy.2011.06.001
  • Bonvino, N.P., Liang, J., McCord, E., (2018). DOliveNet™: a comprehensive library of compounds from Olea europaea, Database, 2018.
  • CLSI (Clinical and Laboratory Standards Institute) (2006). Performance standards for antimicrobial susceptibility testing. Sixteenth Informational Supplement.
  • De Matteis, V., Rizzello, L., Ingrosso, C., Liatsi-Douvitsa, E., De Giorgi, M.L., De Matteis, G., & Rinaldi, R., (2019). Cultivar-Dependent anticancer and antibacterial properties of silver nanoparticles synthesized using leaves of different Olea europaea trees. Nanomaterials, 9(11), 1544. https://doi.org/10.3390/nano9111544
  • Erci, F., (2018). Evaluation of antimicrobial and antibiofilm activity of green synthesized metal nanoparticles [Unpublished Phd Thesis]. Yıldız Teknik University.
  • Erdoğan, O., Abbak, M., Demirbolat, G. M., Birtekoçak, F., Aksel, M., Paşa, S., & Çevik, O., (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS One, 14(6), e0216496. https://doi.org/10.1371/journal.pone.0216496
  • Karakaş, İ., Sağır, L. B., Hacıoğlu Doğru, N., (2023a). Biological activities of green synthesis silver nanoparticles by Plantago lanceolata L. leaves. GSC Biological and Pharmaceutical Sciences, 22(2), 290-296. https://doi.org/10.30574/gscbps.2023.22.2.0079
  • Karakaş, İ., Hacıoğlu Doğru, N. (2023b). Some biological potential of silver nanoparticles synthesized from Ocimum basilicum L.. GSC Biological and Pharmaceutical Sciences, 22(3), 107-113. https://doi.org/10.30574/gscbps.2023.22.3.0099
  • Khan, A.U., Khan, A.U., Li, B., Mahnashi, M.H., Alyami, B.A., Alqahtani, Y.S., … Wasim, M., (2021). Biosynthesis of silver capped magnesium oxide nanocomposite using Olea cuspidata leaf extract and their photocatalytic, antioxidant and antibacterial activity. Photodiagnosis Photodyn, 33, 102153. https://doi.org/10.1016/j.pdpdt.2020.102153
  • Klueh, U., Wagner, V., Kelly, S., Johnson, A., & Bryers, J., (2000). Efficacy of silver‐coated fabric to prevent bacterial colonization and subsequent device‐based biofilm formation. Journal of Biomedical Materials Research Part A, 53, 621 631. https://doi.org/10.1002/1097-4636(2000)53:6<621::aid-jbm2>3.0.co;2-q
  • O'Toole, G.A., (2011). Microtiter dish biofilm formation assay. Journal of Visualized Experiment, 30(47), 2437. https://doi.org/10.3791/2437
  • Özcan, M.M., & Matthäus, B., (2017). A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. Eur Food Res Technol, 243, 89-99. https://doi.org/0.1007/s00217-016-2726-9
  • Piro, N.S., Hamad, S.M., Mohammed, A.S., Barzinjy, A.A., (2023). Green synthesis magnetite (Fe3O4) nanoparticles from Rhus coriaria extract: a characteristic comparison with a conventional chemical method. IEEE Transactions on Nanobioscience, 22(2), 308–317.
  • Rahimzadeh, C.Y., Barzinjy, A.A., Mohammed, A.S., Hamad, S.M., (2022). Green synthesis of SiO2 nanoparticles from Rhus coriaria L. extract: comparison with chemically synthesized SiO2 nanoparticles. PloS One, 17(8), 1 15. https://doi.org/10.1371/journal.pone.0268184
  • Salık, M.A., & Çakmakçı, S. (2021). Zeytin (Olea europaea L.) yaprağının fonksiyonel özellikleri ve gıdalarda kullanım potansiyeli [Functional properties of olive (Olea europaea L.) leaf and its usage capacity in foods]. Gıda, 46(6), 1481-1493.
  • Sellami, H., Khan, S.A., Ahmad, I., Alarfaj, A.A., Hirad, A.H., & Al-Sabri, A.E., (2021). Green synthesis of silver nanoparticles using Olea europaea leaf extract for their enhanced antibacterial, antioxidant, cytotoxic and biocompatibility applications. International Journal of Molecule Sciences, 22(22), 1-16. https://doi.org/10.3390/ijms222212562
  • Veisi, H., Dadres, N., Mohammadi, P., & Hemmati, S., (2019). Green synthesis of silver nanoparticles based on oil-water interface method with essential oil of orange peel and its application as nanocatalyst for A3 couplin. Materials Science and Engineering: C, 105, 110031. https://doi.org/10.1016/j.msec.2019.110031
There are 22 citations in total.

Details

Primary Language English
Subjects Microbiology (Other), Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Özge Ceylan This is me 0000-0001-9619-2243

Nurcihan Hacıoğlu Doğru 0000-0002-5812-9398

Early Pub Date March 19, 2025
Publication Date
Submission Date August 1, 2024
Acceptance Date November 16, 2024
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Ceylan, Ö., & Hacıoğlu Doğru, N. (2025). Biological activities of silver nanoparticles synthesized using Olea europaea L. leaves. International Journal of Secondary Metabolite, 12(2), 289-296.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905