Research Article
BibTex RIS Cite

Antimicrobial activity, phytochemical characterization and molecular docking studies of Nyctanthes arbor-tristis L. extracts

Year 2025, Volume: 12 Issue: 2, 472 - 485

Abstract

Antimicrobial resistance among nosocomial pathogens reduces the efficacy of antibiotics and lead to treatment failure among susceptible patients, which necessitates the identification of novel antimicrobial agents. Nyctanthes arbor-tristis L. is a valuable medicinal plant with numerous bioactive phytochemicals, which could be explored for their antimicrobial potential. This study evaluated the antimicrobial activity of hexane fractions of ethanolic extracts of Nyctanthes arbor-tristis L. against nosocomial bacteria Escherichia coli, Bacillus subtilis, Pseudomonas florescens, Aeromonas hydrophila, Enterococcus faecalis and Kleibsella pneumonia, determined the phytochemical composition and predicted potential antimicrobial compounds through in-silico method. The hexane fractions of ethanolic extracts of Nyctanthes arbor-tristis L. were obtained by maceration and solvent partitioning, and further characterized through gas chromatography–mass spectrometry. The hexane fractions were examined in-vitro for antibacterial activity by the disc diffusion method and minimal inhibitory concentration (MIC) was determined on the basis of optical density. Molecular docking was done using AutoDockTools 1.5.7 and Pyrx. The leaf and stem samples exhibited significant antimicrobial activity against E. coli, B. subtilis, P. florescens and A. hydrophilla. The major compounds identified through GC-MS phytol, 1,2-benzenedicarboxylic acid and dioctyl phthalate were docked; the docking scores were -6.4, -6.6 and -7.2 respectively against 6KVP, while -6.2, -6.7 and -7.6 respectively against 4FS3. This study gives the first report of the antimicrobial activity of non-polar fractions of ethanolic extracts of Nyctanthes arbor-tristis L. against nosocomial bacteria and lead to the identification of phytol, 1,2-benzenedicarboxylic acid and dioctyl phthalate as novel potential antimicrobial agents.

Supporting Institution

Manav Rachna International Institute of Research and Studies, Faridabad, India

References

  • Abraham, A.O., Abdulazeez, A.K., Seun, O.O., & Ogonna, D.W. (2019). Antimicrobial activity of n-hexane extract of Nigella sativa against some pathogenic bacteria. American Journal of Biomedical Science and Research, 6, 430-434.
  • Agaba, P., Tumukunde, J., Tindimwebwa, J.V.B., & Kwizera, A. (2017). Nosocomial bacterial infections and their antimicrobial susceptibility patterns among patients in Ugandan intensive care units: A cross sectional study. BMC Research Notes., 10(1),1 12. https://doi.org/10.1186/s13104-017-2695-5
  • Alaribe, C.S., Shode, F., Coker, H.A., Ayoola, G., Sunday, A., Singh, N., & Iwuanyanwu, S. (2011). Antimicrobial activities of hexane extract and decussatin from stem bark extract of Ficus congensis. International Journal of Molecular Sciences, 12(4), 2750 2756. https://doi.org/10.3390/ijms12042750
  • Avershina, E., Shapovalova, V., & Shipulin, G. (2021). Fighting antibiotic resistance in hospital-acquired infections: current state and emerging technologies in disease prevention, diagnostics and therapy. Frontiers in Microbiology, 12,707330. https://doi.org/10.3389/fmicb.2021.707330
  • Bittencourt, M.L., Ribeiro, P.R., Franco, R.L., Hilhorst, H.W., de Castro, & R.D., Fernandez. (2015). Metabolite profiling, antioxidant and antimicrobial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Research. International., 76, 449-457. https://doi.org/10.1016/j.foodres.2015.07.008
  • Chai, W.C., Whittall, J.J., Polyak, S.W., Foo, K., Li, X., Dutschke, C.J., … Venter, H. (2022). Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division. Frontiers in Microbiology, 13, 967949.
  • Durhan, B., Yalçın, E., Çavuşoğlu, K., & Acar, A. (2022). Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract. Scientific Reports, 12(1), 4308.
  • Ghaneian, M.T., Ehrampoush, M.H., Jebali, A., Hekmatimoghaddam, S., & Mahmoudi, M. (2015). Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environmental Health Engineering and Management Journal, 2(1), 13 16. http://eprints.kmu.ac.ir/id/eprint/22166
  • Harborne, J.B. (1984). Phytochemical methods - a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall, 4–16.
  • Karan, B.N., Maity, T.K., Pal, B.C., Singha, T., & Jana, S. (2019). Betulinic Acid, the first lupane-type triterpenoid isolated via bioactivity-guided fractionation, and identified by spectroscopic analysis from leaves of Nyctanthes arbor-tristis: its potential biological activities in vitro assays. Natural. Product. Research., 33(22), 3287 3292. https://doi.org/10.1080/14786419.2018.1470171
  • Khanam, A.S., & Dwivedi, V. (2022). Comparative analysis on Antimicrobial Activities from Nyctanthes arbor-tristis Plant. Current Agriculture Research Journal, 10(3).
  • Khanum, A., Bibi, Y., Khan, I., Mustafa, G., Attia, K.A., Mohammed, A.A., Yang, S.H., & Qayyum, A. (2024). Molecular docking of bioactive compounds extracted and purified from selected medicinal plant species against covid-19 proteins and in vitro evaluation. Scientific Reports, 14(1), 3736.
  • Khatune, N.A., Mosaddik, M.A., & Haque, M.E. (2001) Antimicrobial activity and cytotoxicity of Nyctanthes arbor tristis flowers. Fitoterapia, 72(4), 412 414. https://doi.org/10.1016/S0367-326X(00)00318-X
  • Kumar, D., Karthik, M., & Rajakumar, R. (2018). In-silico antibacterial activity of active phytocompounds from the ethanolic leaves extract of Eichhornia crassipes (Mart) Solms. against selected target pathogen Pseudomonas fluorescens. Journal of Pharmacognosy and Phytochemistry, 7(5), 12-15.
  • Lazreg-Aref, H., Mars, M., Fekih, A., Aouni, M., & Said, K. (2012). Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharmaceutical Biology, 50(4), 407 412. https://doi.org/10.3109/13880209.2011.608192
  • Lee, W., Woo, E.R., & Lee, D.G. (2016). Phytol has antimicrobial property by inducing oxidative stress response in Pseudomonas Aeruginosa. Free Radical Research., 50(12), 1309-1318. https://doi.org/10.1080/10715762.2016.1241395
  • Mahmood, S., Rasool, F., Hafeez-ur-Rehman, M., & Anjum, K.M. (2024). Molecular characterization of Aeromonas hydrophila detected in Channa marulius and Sperata sarwari sampled from rivers of Punjab in Pakistan. Plos One, 19(3), e0297979.
  • Mir, W.R., Bhat, B.A., Rather, M.A., Muzamil, S., Almilaibary, A., Alkhanani, M., & Mir, M.A. (2022). Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Scientific Reports, 12(1), 12547.
  • Mohamed, E.A.A., Muddathir, A.M., & Osman, M.A. (2020). Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Scientific Reports, 10(1), 17148.
  • Musa, A.M., Ibrahim, M.A., Aliyu, A.B., Abdullahi, M.S., Tajuddeen, N., Ibrahim, H., & Oyewale, A.O. (2015). Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae). Journal of Intercultural Ethnopharmacology, 4(2), 129. https://doi.org/10.5455%2Fjice.20150106124652
  • Nisa, S., Bibi, Y., Masood, S., Ali, A., Alam, S., Sabir, M., … Alharthy, S.A. (2022). Isolation, characterization and anticancer activity of two bioactive compounds from Arisaema flavum (Forssk.) Schott. Molecules, 27(22), 7932.
  • O'Toole, R.F. (2021). The interface between COVID-19 and bacterial healthcare-associated infections. Clinical Microbiology and Infection., 27(12),1772 1776. https://doi.org/10.1016/j.cmi.2021.06.001
  • Oyedeji-Amusa, M.O., Van Vuuren, S.F., Rattray, R.D., & Van Wyk, B.E. (2024). Ethnomedicinal importance and antimicrobial activity of Leonotis ocymifolia. South African Journal of Botany, 172, 678-685.
  • Perdih, A., Hrast, M., Pureber, K., Barreteau, H., Grdadolnik, S.G., Kocjan, D., … Wolber, G. (2015). Furan-based benzene mono-and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC–MurF): experimental and computational characterization. Journal of Computer-Aided Molecular Design, 29, 541-560.
  • Rubab, M., Chellia, R., Saravanakumar, K., Mandava, S., Khan, I., Tango, C.N., … Wang, M.H. (2018). Preservative effect of Chinese cabbage (Brassica rapa subsp. pekinensis) extract on their molecular docking, antioxidant and antimicrobial properties. PLoS One, 13(10), e0203306.
  • Shaaban, M.T., Ghaly, M.F., & Fahmi, S.M. (2021). Antimicrobial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology, 61(6), 557 568. https://doi.org/10.1002/jobm.202100061
  • Sharma, P., & Shourie, A. (2023). Provisioning ecosystem services of Nyctanthes arbor-tristis. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 15(2), 234-244.
  • Singh, A.K., & Solanki, S. (2022). Antimicrobial activity of Nyctanthes arbor-tristis against Staphylococcus aureus, Streptococcus pyogens, Pseudomonas aeruginosa and Salmonella typhi. International Journal of Pharmaceutical Sciences and Research, 13(7), 1000-1009. http://dx.doi.org/10.13040/IJPSR.0975-8232.13(7).1000-09
  • Tiji, S., Rokni, Y., Benayad, O., Laaraj, N., Asehraou, A., & Mimouni, M. (2021). Chemical Composition Related to Antimicrobial Activity of Moroccan Nigella sativa L. Extracts and Isolated Fractions. Journal of Evidence Based Complementary and Alternative Medicine, 8308050. https://doi.org/10.1155/2021/8308050
  • Umaiyambigai, D., Saravanakumar, K., & Raj, A.G. (2017). Phytochemical profile and antifungal activity of leaves methanol extract from the Psydrax dicoccos (Gaertn) Teys. & Binn. Rubiaceace family. International Journal of Pharmacology Phytochemistry and Ethnomedicine., 7, 53-6. https://doi.org/10.18052/www.scipress.com/IJPPE.7.53
  • Vijayalakshmi, U., & Shourie, A. (2019). Yeast extract-mediated elicitation of anti-cancerous compounds licoisoflavone B, licochalcone A, and liquirtigenin in callus cultures of Glycyrrhiza glabra. BioTechnologia., 100(4) C, 441 451. https://doi.org/10.5114/bta.2019.90245
  • Wikaningtyas, P., Sukandar, E.Y. (2016). The antimicrobial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pacific Journal of Tropical Biomedicine, 6(1), 16-19. https://doi.org/10.1016/j.apjtb.2015.08.003
  • Wulandari, A.P., Nafisa, Z.K., Herlina, T., Maharani, R., Darmawan, G., Parikesit, A.A., & Zainul, R. (2024). Metabolite profiling of potential bioactive fractions from ethanol extract of Boehmeria nivea flowers by GC–MS/MS analysis. Phytomedicine Plus, 4(2), 100557.

Antimicrobial activity, phytochemical characterization and molecular docking studies of Nyctanthes arbor-tristis L. extracts

Year 2025, Volume: 12 Issue: 2, 472 - 485

Abstract

Antimicrobial resistance among nosocomial pathogens reduces the efficacy of antibiotics and lead to treatment failure among susceptible patients, which necessitates the identification of novel antimicrobial agents. Nyctanthes arbor-tristis L. is a valuable medicinal plant with numerous bioactive phytochemicals, which could be explored for their antimicrobial potential. This study evaluated the antimicrobial activity of hexane fractions of ethanolic extracts of Nyctanthes arbor-tristis L. against nosocomial bacteria Escherichia coli, Bacillus subtilis, Pseudomonas florescens, Aeromonas hydrophila, Enterococcus faecalis and Kleibsella pneumonia, determined the phytochemical composition and predicted potential antimicrobial compounds through in-silico method. The hexane fractions of ethanolic extracts of Nyctanthes arbor-tristis L. were obtained by maceration and solvent partitioning, and further characterized through gas chromatography–mass spectrometry. The hexane fractions were examined in-vitro for antibacterial activity by the disc diffusion method and minimal inhibitory concentration (MIC) was determined on the basis of optical density. Molecular docking was done using AutoDockTools 1.5.7 and Pyrx. The leaf and stem samples exhibited significant antimicrobial activity against E. coli, B. subtilis, P. florescens and A. hydrophilla. The major compounds identified through GC-MS phytol, 1,2-benzenedicarboxylic acid and dioctyl phthalate were docked; the docking scores were -6.4, -6.6 and -7.2 respectively against 6KVP, while -6.2, -6.7 and -7.6 respectively against 4FS3. This study gives the first report of the antimicrobial activity of non-polar fractions of ethanolic extracts of Nyctanthes arbor-tristis L. against nosocomial bacteria and lead to the identification of phytol, 1,2-benzenedicarboxylic acid and dioctyl phthalate as novel potential antimicrobial agents.

Supporting Institution

Manav Rachna International Institute of Research and Studies, Faridabad, India

References

  • Abraham, A.O., Abdulazeez, A.K., Seun, O.O., & Ogonna, D.W. (2019). Antimicrobial activity of n-hexane extract of Nigella sativa against some pathogenic bacteria. American Journal of Biomedical Science and Research, 6, 430-434.
  • Agaba, P., Tumukunde, J., Tindimwebwa, J.V.B., & Kwizera, A. (2017). Nosocomial bacterial infections and their antimicrobial susceptibility patterns among patients in Ugandan intensive care units: A cross sectional study. BMC Research Notes., 10(1),1 12. https://doi.org/10.1186/s13104-017-2695-5
  • Alaribe, C.S., Shode, F., Coker, H.A., Ayoola, G., Sunday, A., Singh, N., & Iwuanyanwu, S. (2011). Antimicrobial activities of hexane extract and decussatin from stem bark extract of Ficus congensis. International Journal of Molecular Sciences, 12(4), 2750 2756. https://doi.org/10.3390/ijms12042750
  • Avershina, E., Shapovalova, V., & Shipulin, G. (2021). Fighting antibiotic resistance in hospital-acquired infections: current state and emerging technologies in disease prevention, diagnostics and therapy. Frontiers in Microbiology, 12,707330. https://doi.org/10.3389/fmicb.2021.707330
  • Bittencourt, M.L., Ribeiro, P.R., Franco, R.L., Hilhorst, H.W., de Castro, & R.D., Fernandez. (2015). Metabolite profiling, antioxidant and antimicrobial activities of Brazilian propolis: Use of correlation and multivariate analyses to identify potential bioactive compounds. Food Research. International., 76, 449-457. https://doi.org/10.1016/j.foodres.2015.07.008
  • Chai, W.C., Whittall, J.J., Polyak, S.W., Foo, K., Li, X., Dutschke, C.J., … Venter, H. (2022). Cinnamaldehyde derivatives act as antimicrobial agents against Acinetobacter baumannii through the inhibition of cell division. Frontiers in Microbiology, 13, 967949.
  • Durhan, B., Yalçın, E., Çavuşoğlu, K., & Acar, A. (2022). Molecular docking assisted biological functions and phytochemical screening of Amaranthus lividus L. extract. Scientific Reports, 12(1), 4308.
  • Ghaneian, M.T., Ehrampoush, M.H., Jebali, A., Hekmatimoghaddam, S., & Mahmoudi, M. (2015). Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environmental Health Engineering and Management Journal, 2(1), 13 16. http://eprints.kmu.ac.ir/id/eprint/22166
  • Harborne, J.B. (1984). Phytochemical methods - a guide to modern techniques of plant analysis. 2nd ed. London: Chapman and Hall, 4–16.
  • Karan, B.N., Maity, T.K., Pal, B.C., Singha, T., & Jana, S. (2019). Betulinic Acid, the first lupane-type triterpenoid isolated via bioactivity-guided fractionation, and identified by spectroscopic analysis from leaves of Nyctanthes arbor-tristis: its potential biological activities in vitro assays. Natural. Product. Research., 33(22), 3287 3292. https://doi.org/10.1080/14786419.2018.1470171
  • Khanam, A.S., & Dwivedi, V. (2022). Comparative analysis on Antimicrobial Activities from Nyctanthes arbor-tristis Plant. Current Agriculture Research Journal, 10(3).
  • Khanum, A., Bibi, Y., Khan, I., Mustafa, G., Attia, K.A., Mohammed, A.A., Yang, S.H., & Qayyum, A. (2024). Molecular docking of bioactive compounds extracted and purified from selected medicinal plant species against covid-19 proteins and in vitro evaluation. Scientific Reports, 14(1), 3736.
  • Khatune, N.A., Mosaddik, M.A., & Haque, M.E. (2001) Antimicrobial activity and cytotoxicity of Nyctanthes arbor tristis flowers. Fitoterapia, 72(4), 412 414. https://doi.org/10.1016/S0367-326X(00)00318-X
  • Kumar, D., Karthik, M., & Rajakumar, R. (2018). In-silico antibacterial activity of active phytocompounds from the ethanolic leaves extract of Eichhornia crassipes (Mart) Solms. against selected target pathogen Pseudomonas fluorescens. Journal of Pharmacognosy and Phytochemistry, 7(5), 12-15.
  • Lazreg-Aref, H., Mars, M., Fekih, A., Aouni, M., & Said, K. (2012). Chemical composition and antibacterial activity of a hexane extract of Tunisian caprifig latex from the unripe fruit of Ficus carica. Pharmaceutical Biology, 50(4), 407 412. https://doi.org/10.3109/13880209.2011.608192
  • Lee, W., Woo, E.R., & Lee, D.G. (2016). Phytol has antimicrobial property by inducing oxidative stress response in Pseudomonas Aeruginosa. Free Radical Research., 50(12), 1309-1318. https://doi.org/10.1080/10715762.2016.1241395
  • Mahmood, S., Rasool, F., Hafeez-ur-Rehman, M., & Anjum, K.M. (2024). Molecular characterization of Aeromonas hydrophila detected in Channa marulius and Sperata sarwari sampled from rivers of Punjab in Pakistan. Plos One, 19(3), e0297979.
  • Mir, W.R., Bhat, B.A., Rather, M.A., Muzamil, S., Almilaibary, A., Alkhanani, M., & Mir, M.A. (2022). Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya. Scientific Reports, 12(1), 12547.
  • Mohamed, E.A.A., Muddathir, A.M., & Osman, M.A. (2020). Antimicrobial activity, phytochemical screening of crude extracts, and essential oils constituents of two Pulicaria spp. growing in Sudan. Scientific Reports, 10(1), 17148.
  • Musa, A.M., Ibrahim, M.A., Aliyu, A.B., Abdullahi, M.S., Tajuddeen, N., Ibrahim, H., & Oyewale, A.O. (2015). Chemical composition and antimicrobial activity of hexane leaf extract of Anisopus mannii (Asclepiadaceae). Journal of Intercultural Ethnopharmacology, 4(2), 129. https://doi.org/10.5455%2Fjice.20150106124652
  • Nisa, S., Bibi, Y., Masood, S., Ali, A., Alam, S., Sabir, M., … Alharthy, S.A. (2022). Isolation, characterization and anticancer activity of two bioactive compounds from Arisaema flavum (Forssk.) Schott. Molecules, 27(22), 7932.
  • O'Toole, R.F. (2021). The interface between COVID-19 and bacterial healthcare-associated infections. Clinical Microbiology and Infection., 27(12),1772 1776. https://doi.org/10.1016/j.cmi.2021.06.001
  • Oyedeji-Amusa, M.O., Van Vuuren, S.F., Rattray, R.D., & Van Wyk, B.E. (2024). Ethnomedicinal importance and antimicrobial activity of Leonotis ocymifolia. South African Journal of Botany, 172, 678-685.
  • Perdih, A., Hrast, M., Pureber, K., Barreteau, H., Grdadolnik, S.G., Kocjan, D., … Wolber, G. (2015). Furan-based benzene mono-and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC–MurF): experimental and computational characterization. Journal of Computer-Aided Molecular Design, 29, 541-560.
  • Rubab, M., Chellia, R., Saravanakumar, K., Mandava, S., Khan, I., Tango, C.N., … Wang, M.H. (2018). Preservative effect of Chinese cabbage (Brassica rapa subsp. pekinensis) extract on their molecular docking, antioxidant and antimicrobial properties. PLoS One, 13(10), e0203306.
  • Shaaban, M.T., Ghaly, M.F., & Fahmi, S.M. (2021). Antimicrobial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. Journal of Basic Microbiology, 61(6), 557 568. https://doi.org/10.1002/jobm.202100061
  • Sharma, P., & Shourie, A. (2023). Provisioning ecosystem services of Nyctanthes arbor-tristis. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 15(2), 234-244.
  • Singh, A.K., & Solanki, S. (2022). Antimicrobial activity of Nyctanthes arbor-tristis against Staphylococcus aureus, Streptococcus pyogens, Pseudomonas aeruginosa and Salmonella typhi. International Journal of Pharmaceutical Sciences and Research, 13(7), 1000-1009. http://dx.doi.org/10.13040/IJPSR.0975-8232.13(7).1000-09
  • Tiji, S., Rokni, Y., Benayad, O., Laaraj, N., Asehraou, A., & Mimouni, M. (2021). Chemical Composition Related to Antimicrobial Activity of Moroccan Nigella sativa L. Extracts and Isolated Fractions. Journal of Evidence Based Complementary and Alternative Medicine, 8308050. https://doi.org/10.1155/2021/8308050
  • Umaiyambigai, D., Saravanakumar, K., & Raj, A.G. (2017). Phytochemical profile and antifungal activity of leaves methanol extract from the Psydrax dicoccos (Gaertn) Teys. & Binn. Rubiaceace family. International Journal of Pharmacology Phytochemistry and Ethnomedicine., 7, 53-6. https://doi.org/10.18052/www.scipress.com/IJPPE.7.53
  • Vijayalakshmi, U., & Shourie, A. (2019). Yeast extract-mediated elicitation of anti-cancerous compounds licoisoflavone B, licochalcone A, and liquirtigenin in callus cultures of Glycyrrhiza glabra. BioTechnologia., 100(4) C, 441 451. https://doi.org/10.5114/bta.2019.90245
  • Wikaningtyas, P., Sukandar, E.Y. (2016). The antimicrobial activity of selected plants towards resistant bacteria isolated from clinical specimens. Asian Pacific Journal of Tropical Biomedicine, 6(1), 16-19. https://doi.org/10.1016/j.apjtb.2015.08.003
  • Wulandari, A.P., Nafisa, Z.K., Herlina, T., Maharani, R., Darmawan, G., Parikesit, A.A., & Zainul, R. (2024). Metabolite profiling of potential bioactive fractions from ethanol extract of Boehmeria nivea flowers by GC–MS/MS analysis. Phytomedicine Plus, 4(2), 100557.
There are 33 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Botany, Pharmaceutical Microbiology
Journal Section Articles
Authors

Prerna Sharma This is me 0000-0002-8126-1530

Abhilasha Shourie 0000-0002-3659-1143

Early Pub Date March 19, 2025
Publication Date
Submission Date September 10, 2024
Acceptance Date February 5, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA Sharma, P., & Shourie, A. (2025). Antimicrobial activity, phytochemical characterization and molecular docking studies of Nyctanthes arbor-tristis L. extracts. International Journal of Secondary Metabolite, 12(2), 472-485.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905