Research Article
BibTex RIS Cite

Exploring the anti-inflammatory effects of bioactive compounds from assam tea clones: in silico and in vitro approaches

Year 2025, Volume: 12 Issue: 3, 572 - 581, 04.09.2025
https://doi.org/10.21448/ijsm.1542644

Abstract

The consumption of tea, derived from Camellia sinensis, ranks second globally after water. This research explores the anti-inflammatory properties of tea plant varieties from Assam, including TEEN ALI, TV-17, and TV-22, through a comprehensive approach that combines experimental and computational techniques. The Albumin Denaturation Method revealed significant anti-inflammatory effects in all three varieties, with TV-22 demonstrating the highest inhibition rate at 82.11%. This underscores its potential as a powerful anti-inflammatory agent, warranting further investigation. In this study, comparative analysis indicates a link between the composition of tea plant samples and their anti-inflammatory efficacy. In silico modeling, particularly molecular docking, was utilized to evaluate the interaction of selected bioactive compounds with key inflammatory receptors—COX-2, IL-1, and IL-18. Compounds like 2,4-di-tert-butylphenol and caffeine displayed interactions and have energy values comparable to or superior to standard drugs (Diclofenac and Aspirin), suggesting their potential as promising drug candidates. However, the valuable insights the results provided underscore the importance of conducting thorough experimental validations, such as in vitro and in vivo studies, to confirm the efficacy and safety of identified compounds. It opens up avenues for future research by stressing the need to extensively explore specific bioactive compounds, especially in TV-22, which could lead to the development of new anti-inflammatory therapeutics. This interdisciplinary study establishes a groundwork for understanding the therapeutic potential of tea plants and provides a roadmap for creating anti-inflammatory drugs from in natural sources.

Project Number

1

References

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I. N., Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Chen, G., Xie, M., Wan, P., Chen, D., Dai, Z., Ye, H., Hu, B., Zeng, X., & Liu, Z. (2018). Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet-induced mice in association with modulation in the gut microbiota. Journal of Agricultural and Food Chemistry, 66, 2783–2795. https://doi.org/10.1021/acs.jafc.7b05151
  • Cipriani, T.R., Mellinger, C.G., Souza, L.M., Baggio, C., Freitas, C.S., Marques, M.C.A., & et al. (2006). A polysaccharide from a tea (infusion) of Maytenus ilicifolia leaves with anti-ulcer protective effects. Journal of Natural Products, 69, 1018 1021. https://doi.org/10.1021/np060180l
  • Dassault Systèmes. (2020). BIOVIA Discovery Studio: A comprehensive predictive science application for life sciences. Dassault Systèmes Research White Paper. https://discover.3ds.com/discovery-studio-visualizer-download
  • Ding, Y., Pu, L., & Kan, J. (2017). Hypolipidemic effects of lipid-lowering granulated tea preparation from Monascus-fermented grains (adlay and barley bran) mixed with lotus leaves on Sprague–Dawley rats fed a high-fat diet. Journal of Functional Foods, 32, 80–89. https://doi.org/10.1016/j.jff.2017.02.001
  • Engelhardt, U.H. (2010). Chemistry of tea. Comprehensive Natural Products II, 1, 999–1032. https://doi.org/10.1016/B978-008045382-8.00082-1
  • Ho, C.T., Lin, J.K., & Shahidi, F. (2008). Tea and tea products: Chemistry and health-promoting properties. CRC Press, 305. https://doi.org/10.1201/9781420059642
  • Hossain, H., Al-Mansur, A., Akter, S., Sara, U., & Ahmed, M.R., Jahangir, A.A. (2014). Evaluation of anti-inflammatory activity and total tannin content from the leaves of Bacopa monnieri (Linn.). International Journal of Pharmaceutical Sciences and Research, 5(4), 1246–1252.
  • Khan, N., & Mukhtar, H. (2018). Tea polyphenols in promotion of human health. Nutrients, 11, 39. https://doi.org/10.3390/nu11010039
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E.E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Levita, J., Rositama, M.R., Alias, N., Khalida, N., Saptarini, N.M., & Megantara, S. (2017). Discovering COX2 inhibitors from flavonoids and diterpenoids. Journal of Applied Pharmaceutical Science, 7(6), 103–110. https://doi.org/10.7324/JAPS.2017.70614
  • Liu, Y.C., Li, X.Y., & Shen, L. (2020). Modulation effect of tea consumption on gut microbiota. Applied Microbiology and Biotechnology, 104, 981–987. https://doi.org/10.1007/s00253-019-10300-5
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785 2791. https://doi.org/10.1002/jcc.21256
  • Oliveira, T.L.S., Morais, S.R.D., Sa, S.D., Oliveira, M.G.D., Florentino, I.F., Silva, D.M.D., Carvalho, V.V., Silva, V.B.D., Vaz, B.G., Sabino, J.R., Costa, E.A., & Paula, J.R.D. (2017). Antinociceptive, anti-inflammatory and anxiolytic-like effects of the ethanolic extract, fractions and hibalactone isolated from Hydrocotyle umbellata L. (Acariçoba)-Araliaceae. Biomedicine and Pharmacotherapy, 95, 837 846. https://doi.org/10.1016/j.biopha.2017.09.111
  • Orem, A., Alasalvar, C., Kural, B.V., Yaman, S., Orem, C., Karadag, A., Pelvan, E., & Zawistowski, J. (2017). Cardio-protective effects of phytosterol-enriched functional black tea in mild hypercholesterolemia subjects. Journal of Functional Foods, 31, 311–319. https://doi.org/10.1016/j.jff.2017.02.007
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. (2004). UCSF Chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605 1612. https://doi.org/10.1002/jcc.20084
  • Sanlier, N., Gokcen, B.B., & Altug, M. (2018). Tea consumption and disease correlations. Trends in Food Science & Technology, 78, 95 106. https://doi.org/10.1016/j.tifs.2018.05.010
  • Scoparo, C.T., Souza, L.M., Dartora, N., Sassaki, G.L., Gorin, P.A.J., & Iacomini, M. (2012). Analysis of Camellia sinensis green and black teas via ultra-high-performance liquid chromatography assisted by liquid–liquid partition and two-dimensional liquid chromatography (size exclusion reversed phase). Journal of Chromatography A, 1222, 29–37. https://doi.org/10.1016/j.chroma.2011.12.033
  • Shah, K., Mujwar, S., Gupta, J.K., Shrivastava, S.K., & Mishra, P. (2019). Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitor. Assay and Drug Development Technologies, 17(6), 285 291. https://doi.org/10.1089/adt.2018.898
  • Sharangi, A.B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International, 42, 529 535. https://doi.org/10.1016/j.foodres.2009.01.007
  • Wang, D.F., Wang, C.H., Li, J., & Zhao, G.W. (2001). Components and activity of polysaccharides from coarse tea. Journal of Agricultural and Food Chemistry, 49, 507–510. https://doi.org/10.1021/jf0007582
  • Wang, Y.F., Wei, X.L., & Jin, Z.Y. (2009). Structure analysis of an acidic polysaccharide isolated from green tea. Natural Product Research, 23(7), 678 687. https://doi.org/10.1080/14786410802396478
  • Wei, X., Liu, Y., Xiao, J., & Wang, Y. (2009). Protective effects of tea polysaccharides and polyphenols on skin. Journal of Agricultural and Food Chemistry, 57, 7757–7762. https://doi.org/10.1021/jf901190u
  • Xiao, J.B., & Jiang, H.X. (2015). A review on the structure-function relationship aspect of polysaccharides from tea materials. Critical Reviews in Food Science and Nutrition, 55, 930–938. https://doi.org/10.1080/10408398.2012.678910
  • Xiao, J., Huo, J., Jiang, H., & Yang, F. (2011). Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. International Journal of Biological Macromolecules, 49, 1143–1151. https://doi.org/10.1016/j.ijbiomac.2011.08.027
  • Xie, M.Y., & Nie, S.P. (2006). A review of the research progress on tea polysaccharide. Journal of Food Science and Biotechnology, 25(2), 107–114. https://doi.org/10.1007/s11483-006-0027-2
  • Yang, C.S., Wang, H., & Sheridan, Z.P. (2018). Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. Journal of Food and Drug Analysis, 26, 1–13. https://doi.org/10.1016/j.jfda.2017.10.004
  • Yatam, S., Gundla, R., Jadav, S.S., Reddy Pedavenkatagari, N., Chimakurthy, J., & Kedam, T. (2018). Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX2/5-LOX inhibitors. Journal of Molecular Structure, 1159, 193–204. https://doi.org/10.1016/j.molstruc.2018.01.071
  • Yatam, S., Jadav, S.S., Gundla, K.P., Paidikondala, K., Ankireddy, A.R., Babu, B.N., Ahsan, M. J., & Gundla, R. (2019). 2-Mercapto benzthiazole coupled benzyl triazoles as new COX-2 inhibitors: Design, synthesis, biological testing, and molecular modeling studies. ChemistrySelect, 4(37), 11081–11092. https://doi.org/10.1002/slct.201902972
  • Yuan, C., Li, Z., Peng, F., Xiao, F., Ren, D., Xue, H., Chen, T., Mushtaq, G., & Kamal, M.A. (2015). Combination of selenium-enriched green tea polysaccharides and Huo-Ji polysaccharides synergistically enhances antioxidant and immune activity in mice. Journal of the Science of Food and Agriculture, 95, 3211–3217. https://doi.org/10.1002/jsfa.7037
  • Zampelas, A., & Micha, R. (2015). Antioxidants in health and disease. CRC Press. https://doi.org/10.1201/9781315365833
  • Zhang, Q.L., Zhang, J., Xia, P.F., Peng, X.J., Li, H.L., Jin, H., Li, Y., Yang, J., & Zhao, L. (2019). Antiinflammatory activities of gentiopicroside against iNOS and COX-2 targets. Chinese Herbal Medicine, 11(1), 108–113. https://doi.org/10.1016/j.chmed.2018.08.006
  • Zheng, X.Q., Li, Q.S., Xiang, L.P., & Liang, Y.R. (2016). Recent advances in volatiles of teas. Molecules, 21, 338. https://doi.org/10.3390/molecules21030338
  • Zhou, P., Xie, M.Y., & Fu, B.Q. (2001). A review of the studies on the polysaccharide structure. Journal of Nanchang University (Natural Science), 25(2), 197–204.
  • Zhu, J., Yu, C., Zhou, H., Wei, X., & Wang, Y. (2021). Comparative evaluation for phytochemical composition and regulation of blood glucose, hepatic oxidative stress and insulin resistance in mice and HepG2 models of four typical Chinese dark teas. Journal of the Science of Food and Agriculture, 101, 6563–6577. https://doi.org/10.1002/jsfa.11172
  • Zhu, J., Zhou, H., Zhang, J., Li, F., Wei, K., Wei, X., & Wang, Y. (2021). Valorization of polysaccharides obtained from dark tea: Preparation, physicochemical, antioxidant, and hypoglycemic properties. Foods, 10, 2276. https://doi.org/10.3390/foods10102276

Exploring the anti-inflammatory effects of bioactive compounds from assam tea clones: in silico and in vitro approaches

Year 2025, Volume: 12 Issue: 3, 572 - 581, 04.09.2025
https://doi.org/10.21448/ijsm.1542644

Abstract

The consumption of tea, derived from Camellia sinensis, ranks second globally after water. This research explores the anti-inflammatory properties of tea plant varieties from Assam, including TEEN ALI, TV-17, and TV-22, through a comprehensive approach that combines experimental and computational techniques. The Albumin Denaturation Method revealed significant anti-inflammatory effects in all three varieties, with TV-22 demonstrating the highest inhibition rate at 82.11%. This underscores its potential as a powerful anti-inflammatory agent, warranting further investigation. In this study, comparative analysis indicates a link between the composition of tea plant samples and their anti-inflammatory efficacy. In silico modeling, particularly molecular docking, was utilized to evaluate the interaction of selected bioactive compounds with key inflammatory receptors—COX-2, IL-1, and IL-18. Compounds like 2,4-di-tert-butylphenol and caffeine displayed interactions and have energy values comparable to or superior to standard drugs (Diclofenac and Aspirin), suggesting their potential as promising drug candidates. However, the valuable insights the results provided underscore the importance of conducting thorough experimental validations, such as in vitro and in vivo studies, to confirm the efficacy and safety of identified compounds. It opens up avenues for future research by stressing the need to extensively explore specific bioactive compounds, especially in TV-22, which could lead to the development of new anti-inflammatory therapeutics. This interdisciplinary study establishes a groundwork for understanding the therapeutic potential of tea plants and provides a roadmap for creating anti-inflammatory drugs from in natural sources.

Project Number

1

References

  • Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I. N., Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Chen, G., Xie, M., Wan, P., Chen, D., Dai, Z., Ye, H., Hu, B., Zeng, X., & Liu, Z. (2018). Fuzhuan brick tea polysaccharides attenuate metabolic syndrome in high-fat diet-induced mice in association with modulation in the gut microbiota. Journal of Agricultural and Food Chemistry, 66, 2783–2795. https://doi.org/10.1021/acs.jafc.7b05151
  • Cipriani, T.R., Mellinger, C.G., Souza, L.M., Baggio, C., Freitas, C.S., Marques, M.C.A., & et al. (2006). A polysaccharide from a tea (infusion) of Maytenus ilicifolia leaves with anti-ulcer protective effects. Journal of Natural Products, 69, 1018 1021. https://doi.org/10.1021/np060180l
  • Dassault Systèmes. (2020). BIOVIA Discovery Studio: A comprehensive predictive science application for life sciences. Dassault Systèmes Research White Paper. https://discover.3ds.com/discovery-studio-visualizer-download
  • Ding, Y., Pu, L., & Kan, J. (2017). Hypolipidemic effects of lipid-lowering granulated tea preparation from Monascus-fermented grains (adlay and barley bran) mixed with lotus leaves on Sprague–Dawley rats fed a high-fat diet. Journal of Functional Foods, 32, 80–89. https://doi.org/10.1016/j.jff.2017.02.001
  • Engelhardt, U.H. (2010). Chemistry of tea. Comprehensive Natural Products II, 1, 999–1032. https://doi.org/10.1016/B978-008045382-8.00082-1
  • Ho, C.T., Lin, J.K., & Shahidi, F. (2008). Tea and tea products: Chemistry and health-promoting properties. CRC Press, 305. https://doi.org/10.1201/9781420059642
  • Hossain, H., Al-Mansur, A., Akter, S., Sara, U., & Ahmed, M.R., Jahangir, A.A. (2014). Evaluation of anti-inflammatory activity and total tannin content from the leaves of Bacopa monnieri (Linn.). International Journal of Pharmaceutical Sciences and Research, 5(4), 1246–1252.
  • Khan, N., & Mukhtar, H. (2018). Tea polyphenols in promotion of human health. Nutrients, 11, 39. https://doi.org/10.3390/nu11010039
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B.A., Thiessen, P.A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E.E. (2019). PubChem 2019 update: Improved access to chemical data. Nucleic Acids Research, 47(D1), D1102–D1109. https://doi.org/10.1093/nar/gky1033
  • Levita, J., Rositama, M.R., Alias, N., Khalida, N., Saptarini, N.M., & Megantara, S. (2017). Discovering COX2 inhibitors from flavonoids and diterpenoids. Journal of Applied Pharmaceutical Science, 7(6), 103–110. https://doi.org/10.7324/JAPS.2017.70614
  • Liu, Y.C., Li, X.Y., & Shen, L. (2020). Modulation effect of tea consumption on gut microbiota. Applied Microbiology and Biotechnology, 104, 981–987. https://doi.org/10.1007/s00253-019-10300-5
  • Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785 2791. https://doi.org/10.1002/jcc.21256
  • Oliveira, T.L.S., Morais, S.R.D., Sa, S.D., Oliveira, M.G.D., Florentino, I.F., Silva, D.M.D., Carvalho, V.V., Silva, V.B.D., Vaz, B.G., Sabino, J.R., Costa, E.A., & Paula, J.R.D. (2017). Antinociceptive, anti-inflammatory and anxiolytic-like effects of the ethanolic extract, fractions and hibalactone isolated from Hydrocotyle umbellata L. (Acariçoba)-Araliaceae. Biomedicine and Pharmacotherapy, 95, 837 846. https://doi.org/10.1016/j.biopha.2017.09.111
  • Orem, A., Alasalvar, C., Kural, B.V., Yaman, S., Orem, C., Karadag, A., Pelvan, E., & Zawistowski, J. (2017). Cardio-protective effects of phytosterol-enriched functional black tea in mild hypercholesterolemia subjects. Journal of Functional Foods, 31, 311–319. https://doi.org/10.1016/j.jff.2017.02.007
  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. (2004). UCSF Chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605 1612. https://doi.org/10.1002/jcc.20084
  • Sanlier, N., Gokcen, B.B., & Altug, M. (2018). Tea consumption and disease correlations. Trends in Food Science & Technology, 78, 95 106. https://doi.org/10.1016/j.tifs.2018.05.010
  • Scoparo, C.T., Souza, L.M., Dartora, N., Sassaki, G.L., Gorin, P.A.J., & Iacomini, M. (2012). Analysis of Camellia sinensis green and black teas via ultra-high-performance liquid chromatography assisted by liquid–liquid partition and two-dimensional liquid chromatography (size exclusion reversed phase). Journal of Chromatography A, 1222, 29–37. https://doi.org/10.1016/j.chroma.2011.12.033
  • Shah, K., Mujwar, S., Gupta, J.K., Shrivastava, S.K., & Mishra, P. (2019). Molecular docking and in silico cogitation validate mefenamic acid prodrugs as human cyclooxygenase-2 inhibitor. Assay and Drug Development Technologies, 17(6), 285 291. https://doi.org/10.1089/adt.2018.898
  • Sharangi, A.B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.) – A review. Food Research International, 42, 529 535. https://doi.org/10.1016/j.foodres.2009.01.007
  • Wang, D.F., Wang, C.H., Li, J., & Zhao, G.W. (2001). Components and activity of polysaccharides from coarse tea. Journal of Agricultural and Food Chemistry, 49, 507–510. https://doi.org/10.1021/jf0007582
  • Wang, Y.F., Wei, X.L., & Jin, Z.Y. (2009). Structure analysis of an acidic polysaccharide isolated from green tea. Natural Product Research, 23(7), 678 687. https://doi.org/10.1080/14786410802396478
  • Wei, X., Liu, Y., Xiao, J., & Wang, Y. (2009). Protective effects of tea polysaccharides and polyphenols on skin. Journal of Agricultural and Food Chemistry, 57, 7757–7762. https://doi.org/10.1021/jf901190u
  • Xiao, J.B., & Jiang, H.X. (2015). A review on the structure-function relationship aspect of polysaccharides from tea materials. Critical Reviews in Food Science and Nutrition, 55, 930–938. https://doi.org/10.1080/10408398.2012.678910
  • Xiao, J., Huo, J., Jiang, H., & Yang, F. (2011). Chemical compositions and bioactivities of crude polysaccharides from tea leaves beyond their useful date. International Journal of Biological Macromolecules, 49, 1143–1151. https://doi.org/10.1016/j.ijbiomac.2011.08.027
  • Xie, M.Y., & Nie, S.P. (2006). A review of the research progress on tea polysaccharide. Journal of Food Science and Biotechnology, 25(2), 107–114. https://doi.org/10.1007/s11483-006-0027-2
  • Yang, C.S., Wang, H., & Sheridan, Z.P. (2018). Studies on prevention of obesity, metabolic syndrome, diabetes, cardiovascular diseases and cancer by tea. Journal of Food and Drug Analysis, 26, 1–13. https://doi.org/10.1016/j.jfda.2017.10.004
  • Yatam, S., Gundla, R., Jadav, S.S., Reddy Pedavenkatagari, N., Chimakurthy, J., & Kedam, T. (2018). Focused library design and synthesis of 2-mercapto benzothiazole linked 1,2,4-oxadiazoles as COX2/5-LOX inhibitors. Journal of Molecular Structure, 1159, 193–204. https://doi.org/10.1016/j.molstruc.2018.01.071
  • Yatam, S., Jadav, S.S., Gundla, K.P., Paidikondala, K., Ankireddy, A.R., Babu, B.N., Ahsan, M. J., & Gundla, R. (2019). 2-Mercapto benzthiazole coupled benzyl triazoles as new COX-2 inhibitors: Design, synthesis, biological testing, and molecular modeling studies. ChemistrySelect, 4(37), 11081–11092. https://doi.org/10.1002/slct.201902972
  • Yuan, C., Li, Z., Peng, F., Xiao, F., Ren, D., Xue, H., Chen, T., Mushtaq, G., & Kamal, M.A. (2015). Combination of selenium-enriched green tea polysaccharides and Huo-Ji polysaccharides synergistically enhances antioxidant and immune activity in mice. Journal of the Science of Food and Agriculture, 95, 3211–3217. https://doi.org/10.1002/jsfa.7037
  • Zampelas, A., & Micha, R. (2015). Antioxidants in health and disease. CRC Press. https://doi.org/10.1201/9781315365833
  • Zhang, Q.L., Zhang, J., Xia, P.F., Peng, X.J., Li, H.L., Jin, H., Li, Y., Yang, J., & Zhao, L. (2019). Antiinflammatory activities of gentiopicroside against iNOS and COX-2 targets. Chinese Herbal Medicine, 11(1), 108–113. https://doi.org/10.1016/j.chmed.2018.08.006
  • Zheng, X.Q., Li, Q.S., Xiang, L.P., & Liang, Y.R. (2016). Recent advances in volatiles of teas. Molecules, 21, 338. https://doi.org/10.3390/molecules21030338
  • Zhou, P., Xie, M.Y., & Fu, B.Q. (2001). A review of the studies on the polysaccharide structure. Journal of Nanchang University (Natural Science), 25(2), 197–204.
  • Zhu, J., Yu, C., Zhou, H., Wei, X., & Wang, Y. (2021). Comparative evaluation for phytochemical composition and regulation of blood glucose, hepatic oxidative stress and insulin resistance in mice and HepG2 models of four typical Chinese dark teas. Journal of the Science of Food and Agriculture, 101, 6563–6577. https://doi.org/10.1002/jsfa.11172
  • Zhu, J., Zhou, H., Zhang, J., Li, F., Wei, K., Wei, X., & Wang, Y. (2021). Valorization of polysaccharides obtained from dark tea: Preparation, physicochemical, antioxidant, and hypoglycemic properties. Foods, 10, 2276. https://doi.org/10.3390/foods10102276
There are 36 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Pharmaceutical Biotechnology, Natural Products and Bioactive Compounds
Journal Section Articles
Authors

Nishanth Pitcham 0009-0000-3003-375X

Hariram Natarajan This is me 0000-0002-1284-7829

Project Number 1
Early Pub Date June 11, 2025
Publication Date September 4, 2025
Submission Date September 3, 2024
Acceptance Date March 28, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Pitcham, N., & Natarajan, H. (2025). Exploring the anti-inflammatory effects of bioactive compounds from assam tea clones: in silico and in vitro approaches. International Journal of Secondary Metabolite, 12(3), 572-581. https://doi.org/10.21448/ijsm.1542644
International Journal of Secondary Metabolite

e-ISSN: 2148-6905