Research Article
BibTex RIS Cite

Antioxidant enhancement of Cystoseira barbata extracts via nanoliposomal encapsulation

Year 2025, Volume: 12 Issue: 3, 732 - 742, 04.09.2025
https://doi.org/10.21448/ijsm.1622199

Abstract

Seaweeds are well-known for their numerous health benefits, which include antioxidant, antimicrobial, antitumor, and anti-inflammatory properties. They produce secondary metabolites to withstand extreme conditions such as high temperatures, fluctuating salinity, intense sunlight, and varying oxygen levels. These compounds not only serve as protective mechanisms for the seaweeds but also hold potential for medicinal applications and other biologically active uses.
In this study, we investigated the effects of nanoliposomal encapsulation on the antioxidant capacity of extracts from Cystoseira barbata, collected from the Bursa/Mudanya coast. The extract was obtained from dried algal samples using ethanol solvent at a ratio of 1:1. The total phenolic content of the extract was analyzed, revealing the highest phenol concentration of 2.66 mg GAE/g. The DPPH assay was conducted to assess the antioxidant capacity of both free extract (FE) and the nanoliposomal encapsulated extract (NE). Inhibition (%) values showed a positive correlation with concentration, yielding values of 19.41 for FE and 31.33 for NE. Nanoliposomal encapsulation enhanced DPPH scavenging capacity by 61% compared to FE. Thus, the nanoliposomal encapsulation technique appears to be a promising method for enhancing the effectiveness of C. barbata extracts as antioxidant agents.

Project Number

1139B412202623

Thanks

We thank to TUBİTAK 2209-B programme for the financial support.

References

  • Aktar, M.N., Islam, M.M., Raza, M.S., Azhar, B.S., Moni, Z.R., Rahman, M.M., & Tang, M.A.K. (2022). Phytochemical characteristics and antioxidant potential of litchi chinensis sonn. seeds of bangladesh. Bangladesh Journal of Agriculture, 47(1), 16-26.
  • Alagan, V., Valsala, R.N., & Rajesh, K.D. (2017). Bioactive chemical constituent analysis, in vitro antioxidant and antimicrobial activity of whole plant methanol extracts of Ulva lactuca Linn. British Journal of Pharmaceutical Research, 15(1), 1 14. https://doi.org/10.9734/BJPR/2017/31818
  • Aly, S.H., Elissawy, A.M., El Hassab, M.A., Majrashi, T.A., Hassan, F.E., Elkaeed, E.B., ... & Singab, A.N.B. (2024). Comparative metabolic study of the chloroform fraction of three Cystoseira species based on UPLC/ESI/MS analysis and biological activities. Journal of Enzyme Inhibition and Medicinal Chemistry, 39(1), 2292482. https://doi.org/10.1080/14756366.2023.2292482
  • Anjali, K.P., Sangeetha, B.M., Devi, G., Raghunathan, R., & Dutta, S. (2019). Bioprospecting of seaweeds (Ulva lactuca and Stoechospermum marginatum): The compound characterization and functional applications in medicine-a comparative study. Journal of Photochemistry and Photobiology B: Biology, 200,111622. https://doi.org/10.1016/j.jphotobiol.2019.111622
  • Baranauskaite, J., Duman, G., Corapcıoğlu, G., Baranauskas, A., Taralp, A., Ivanauskas, L., & Bernatoniene, J. (2018). Liposomal incorporation to improve dissolution and stability of rosmarinic acid and carvacrol extracted from oregano (O. onites L.). BioMed Research International, (1), 6147315. https://doi.org/10.1155/2018/6147315
  • Bozkurt, E., Sıcak, Y., Oruç-Emre, E.E., Iyidoğan, A.K., & Öztürk, M. (2020). Design and bioevaluation of novel hydrazide-hydrazones derived from 4-acetyl-N-substituted benzenesulfonamide. Russian Journal of Bioorganic Chemistry, 46, 702-714.
  • Caddeo, C., Pucci, L., Gabriele, M., Carbone, C., Fernàndez-Busquets, X., Valenti, D., ... & Manconi, M. (2018). Stability, biocompatibility and antioxidant activity of PEG-modified liposomes containing resveratrol. International Journal of Pharmaceutics, 538(1-2), 40-47. https://doi.org/10.1016/j.ijpharm.2017.12.047
  • Cagal, M.M., Taner, G., Kalaycı, S., & Duman, G. (2025). Enhanced antibacterial and genoprotective properties of nanoliposomal Satureja hortensis L. essential oil. Drug and Chemical Toxicology, 1-7. https://doi.org/10.1080/01480545.2024.2362180
  • Custódio, L., Silvestre, L., Rocha, M.I., Rodrigues, M.J., Vizetto-Duarte, C., Pereira, H., ... & Varela, J. (2016). Methanol extracts from Cystoseira tamariscifolia and Cystoseira nodicaulis are able to inhibit cholinesterases and protect a human dopaminergic cell line from hydrogen peroxide-induced cytotoxicity. Pharmaceutical Biology, 54(9), 1687-1696. https://doi.org/10.3109/13880209.2015.1123278
  • Dini, I. (2023). The potential of algae in the nutricosmetic sector. Molecules, 28(10), 4032.
  • El Gamal, A.A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1-25. https://doi.org/10.1016/j.jsps.2009.12.001
  • Farvin, K.S., & Jacobsen, C. (2013). Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chemistry, 138(2 3), 1670 1681. https://doi.org/10.1016/j.foodchem.2012.10.078
  • Gorjian, H., Raftani Amiri, Z., Mohammadzadeh Milani, J., & Ghaffari Khaligh, N. (2022). Influence of nanovesicle type, nanoliposome and nanoniosome, on antioxidant and antimicrobial activities of encapsulated myrtle extract: a comparative study. Food and Bioprocess Technology, 15(1), 144-164.
  • Goutzourelas, N., Kevrekidis, D.P., Barda, S., Malea, P., Trachana, V., Savvidi, S., ... & Stagos, D. (2023). Antioxidant activity and inhibition of liver cancer cells’ growth of extracts from 14 marine macroalgae species of the Mediterranean Sea. Foods, 12(6), 1310. https://doi.org/10.3390/foods12061310
  • Haghdoost, A., Golestan, L., Hasani, M., Shahidi Noghabi, M., & Shahidi, S.A. (2023). Encapsulation of the extracted phycobiliprotein from Gracilaria gracilis in nanoliposomes: Physicochemical, structural and stability properties. Iranian Journal of Fisheries Sciences, 22(5), 1018-1038.
  • Hejna, M., Dell’Anno, M., Liu, Y., Rossi, L., Aksmann, A., Pogorzelski, G., & Jóźwik, A. (2024). Assessment of the antibacterial and antioxidant activities of seaweed-derived extracts. Scientific Reports, 14(1), 21044.
  • Jiménez‐Escrig, A., Jiménez‐Jiménez, I., Pulido, R., & Saura‐Calixto, F. (2001). Antioxidant activity of fresh and processed edible seaweeds. Journal of the Science of Food and Agriculture, 81(5), 530-534.
  • Karawita, R., Siriwardhana, N., Lee, K.W., Heo, M.S., Yeo, I.K., Lee, Y.D., & Jeon, Y.J. (2005). Reactive oxygen species scavenging, metal chelation, reducing power and lipid peroxidation inhibition properties of different solvent fractions from Hizikia fusiformis. European Food Research and Technology, 220, 363-371.
  • Kelman, D., Posner, E.K., McDermid, K.J., Tabandera, N.K., Wright, P.R., & Wright, A.D. (2012). Antioxidant activity of Hawaiian marine algae. Marine Drugs, 10(2), 403-416. https://doi.org/10.3390/md10020403
  • Khorasani, S., Danaei, M., & Mozafari, M.R. (2018). Nanoliposome technology for the food and nutraceutical industries. Trends in Food Science & Technology, 79, 106-115. https://doi.org/10.1016/j.tifs.2018.07.009
  • Kılınç, B., Cirik, S., Turan, G., Tekogul, H., & Koru, E. (2013). Seaweeds for food and industrial applications. In Food industry. IntechOpen. https://doi.org/10.5772/53172
  • Koo, S.Y., Hwang, K.T., Hwang, S., Choi, K.Y., Park, Y.J., Choi, J.H., ... & Kim, S.M. (2023). Nanoencapsulation enhances the bioavailability of fucoxanthin in microalga Phaeodactylum tricornutum extract. Food Chemistry, 403, 134348. https://doi.org/10.1016/j.foodchem.2022.134348
  • Leelavathi, M., & Prasad, M. (2014). Evaluation of antioxidant properties of marine seaweed samples by DPPH method. International Journal of Pure & Applied Bioscience, 2(6), 132-137.
  • Macit, M., Eyupoglu, O.E., Macit, C., & Duman, G. (2021). Formulation development of liposomal coffee extracts and investigation of their antioxidant capacities. Journal of Drug Delivery Science and Technology, 64, 102605.https://doi.org/10.1016/j.jddst.2021.102605
  • Maghraby, Y.R., Farag, M.A., Kontominas, M.G., Shakour, Z.T., & Ramadan, A.R. (2022). Nanoencapsulated extract of a red seaweed (Rhodophyta) species as a promising source of natural antioxidants. ACS omega, 7(8), 6539 6548. https://doi.org/10.1021/acsomega.1c05517
  • Martín, Á., Varona, S., Navarrete, A., & Cocero, M. J. (2010). Encapsulation and co-precipitation processes with supercritical fluids: applications with essential oils.
  • Mashjoor, S., Yousefzadi, M., Esmaeili, M. A., & Rafiee, R. (2016). Cytotoxicity and antimicrobial activity of marine macro algae (Dictyotaceae and Ulvaceae) from the Persian Gulf. Cytotechnology, 68, 1717-1726.
  • Mhadhebi, L., Mhadhebi, A., Robert, J., & Bouraoui, A. (2014). Antioxidant, anti-inflammatory and antiproliferative effects of aqueous extracts of three mediterranean brown seaweeds of the genus Cystoseira. Iranian journal of pharmaceutical research: IJPR, 13(1), 207.
  • Morgan, K.C., Wright, J.L., & Simpson, F.J. (1980). Review of chemical constituents of the red alga Palmaria palmata (dulse). Economic Botany, 34(1), 27-50.
  • Mutlu‐Durak, H., Arikan‐Algul, Y., Bayram, E., Haznedaroglu, B.Z., Kutman, U.B., & Kutman, B.Y. (2024). Various extracts of the brown seaweed Cystoseira barbata with different compositions exert biostimulant effects on seedling growth of wheat. Physiologia Plantarum, 176(4), e14503. https://doi.org/10.1111/ppl.14503
  • Nakano, T., Watanabe, M., Sato, M., & Takeuchi, M. (1995). Characterization of catalase from the seaweed Porphyra yezoensis. Plant Science, 104(2), 127 133. https://doi.org/10.1016/0168-9452(94)04025
  • Nizam, N., Taner, G., & Cagal, M.M. (2024). Nanoliposomal system for augmented antibacterial and antiproliferative efficacy of Melissa officinalis L. extract. Toxicology Research, 13(6), tfae198.
  • Parın, F.N., Sıcak, Y., Eliuz, E., & Terzioğlu, P. (2022). Fabrication of mandarin (Citrus reticulate L.) peel essential oil and nano-calcium carbonate incorporated polylactic acid/polyvinylpyrrolidone electrospun webs. Journal of the Institute of Science and Technology, 12(4), 2313-2321. https://doi.org/10.21597/jist.1093901
  • Reyes, M.E., Riquelme, I., Salvo, T., Zanella, L., Letelier, P., & Brebi, P. (2020). Brown seaweed fucoidan in cancer: Implications in metastasis and drug resistance. Marine Drugs, 18(5), 232. https://doi.org/10.3390/md18050232
  • Sathya, R., Kanaga, N., Sankar, P., & Jeeva, S. (2017). Antioxidant properties of phlorotannins from brown seaweed Cystoseira trinodis (Forsskål) C. Agardh. Arabian Journal of Chemistry, 10, S2608-S2614. https://doi.org/10.1016/j.arabjc.2013.09.039
  • Savaghebi, D., Barzegar, M., & Mozafari, M.R. (2020). Manufacturing of nanoliposomal extract from Sargassum boveanum algae and investigating its release behavior and antioxidant activity. Food Science & Nutrition, 8(1), 299 310. https://doi.org/10.1002/fsn3.1306
  • Sıcak, Y., Büyüksakallı, H., Malkoçoğlu, S., Özler, M.A., & Öztürk, M. (2017). Antioxidant, anticholinesterase inhibitory and tyrosinase inhibitory activities of Iris xanthospuria extracts growing in Köyceğiz region. Journal of Ongoing Chemical Research, 3(1), 22-31. https://doi.org/10.5281/zenodo.3768634
  • Sherry, M., Charcosset, C., Fessi, H., & Greige-Gerges, H. (2013). Essential oils encapsulated in liposomes: A review. Journal of Liposome Research, 23(4), 268 275. https://doi.org/10.3109/08982104.2013.819888
  • Shirani Bidabadi, K., Safaeian, S., Mousavi Nodoshan, R., & Rahimifard, N. (2024). Liposomes loaded with Padina distromatic alga extract: Physicochemical characterization and release behavior under simulated gastrointestinal conditions. Iranian Journal of Chemistry and Chemical Engineering, 43(6), 2248 2258. https://doi.org/10.30492/ijcce.2024.2011834.6228
  • Shoji, Y., & Nakashima, H. (2004). Nutraceutics and delivery systems. Journal of Drug Targeting, 12(6), 385-391. https://doi.org/10.1080/10611860400003817
  • Sultana, B., Anwar, F., & Przybylski, R. (2007). Antioxidant activity of phenolic components present in barks of Azadirachta indica, Terminalia arjuna, Acacia nilotica, and Eugenia jambolana Lam. trees. Food Chemistry, 104(3), 1106 1114. https://doi.org/10.1016/j.foodchem.2007.01.019
  • Takamatsu, S., Hodges, T.W., Rajbhandari, I., Gerwick, W.H., Hamann, M.T., & Nagle, D.G. (2003). Marine natural products as novel antioxidant prototypes. Journal of Natural Products, 66(5), 605-608. https://doi.org/10.1021/np0204038
  • Tavakoli, H., Hosseini, O., Jafari, S.M., & Katouzian, I. (2018). Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf phenolics within nanoliposomes. Journal of Agricultural and Food Chemistry, 66(35), 9231 9240. https://doi.org/10.1021/acs.jafc.8b02759
  • Taylor, T.M., Weiss, J., Davidson, P.M., & Bruce, B.D. (2005). Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition, 45(7-8), 587-605.https://doi.org/10.1080/10408390591001135
  • Wang, T., Jónsdóttir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240-248. https://doi.org/10.1016/j.foodchem.2009.02.041
  • Yegdaneh, A., Ghannadi, A., & Dayani, L. (2016). Chemical constituents and biological activities of two Iranian Cystoseira species. Research in Pharmaceutical Sciences, 11(4), 311-317. https://doi.org/10.4103/1735-5362.189307
  • Yoshie, Y., Wang, W.E.I., Petillo, D., & Suzuki, T. (2000). Distribution of catechins in Japanese seaweeds. Fisheries Science, 66(5), 998-1000.
  • Zou, L. Q., Liu, W., Liu, W.L., Liang, R.H., Li, T., Liu, C.M., ... & Liu, Z. (2014a). Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. Journal of Agricultural and Food Chemistry, 62(4), 934-941. https://doi.org/10.1021/jf402886s
  • Zou, L.Q., Peng, S.F., Liu, W., Gan, L., Liu, W.L., Liang, R.H., ... & Chen, X. (2014b). Improved in vitro digestion stability of (−)-epigallocatechin gallate through nanoliposome encapsulation. Food Research International, 64,492 499. https://doi.org/10.1016/j.foodres.2014.07.042
  • Zou, Y., Qian, Z.J., Li, Y., Kim, M.M., Lee, S.H., & Kim, S.K. (2008). Antioxidant effects of phlorotannins isolated from Ishige okamurae in free radical mediated oxidative systems. Journal of Agricultural and Food Chemistry, 56(16), 7001 7009. https://doi.org/10.1021/jf801133h
There are 50 citations in total.

Details

Primary Language English
Subjects Pharmaceutical Biotechnology
Journal Section Articles
Authors

Melih Cafer This is me

İnci Tüney 0000-0003-0293-6964

Münevver Müge Çağal 0000-0002-1786-1216

Project Number 1139B412202623
Early Pub Date August 30, 2025
Publication Date September 4, 2025
Submission Date January 20, 2025
Acceptance Date June 12, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Cafer, M., Tüney, İ., & Çağal, M. M. (2025). Antioxidant enhancement of Cystoseira barbata extracts via nanoliposomal encapsulation. International Journal of Secondary Metabolite, 12(3), 732-742. https://doi.org/10.21448/ijsm.1622199
International Journal of Secondary Metabolite

e-ISSN: 2148-6905