Research Article
BibTex RIS Cite

Investigation of antimicrobial effects of essential oil and secondary metabolite extraction from Ruscus aculeatus L. (Asparagaceae)

Year 2025, Volume: 12 Issue: 4, 832 - 846

Abstract

Ruscus aculeatus L. (Asparagaceae) is an important species with medicinal, industrial, and ornamental uses. In this study, the oil extract and secondary metabolites obtained from the fruit of R. aculeatus were tested against some bacterial and fungal pathogens to investigate their antimicrobial properties. R. aculeatus plant was collected from Yalıncak/Trabzon in May 2024. To get essential oil, the ripe fruits of the R. aculeatus plant dry weight were weighed, crushed with a mortar and transferred to a Soxhlet cartridge. And for getting secondary metabolites, 30 grams of ground leaves were placed in two different jars containing 100 mL of ethanol and methanol. The crude extracts and the solvents were evaporated in a rotary evaporator to obtain crude extracts. The extract obtained was used for antimicrobial tests by the disc diffusion method. Firstly, each pathogen was inoculated into Mueller-Hinton Agar (MHA) medium by smear inoculation. Then, antibiotic discs were placed in the medium. Each disc was impregnated with 30 µl of extract. The same volume of kanamycin was used as a control. After 24 and 48 hours, the diameters of the zones formed around the discs were measured and recorded. In the antimicrobial experiment, the analysis of the ES column revealed that the compound demonstrated no efficacy against E. cloaceae, S. epidermidis, K pneumoniae, and C. albicans (p>0.01). However, it was observed to form a significant inhibition zone in other bacterial groups. At the end of the study, it was determined that the extraction was effective on Bacillus subtilis ATCC 6633.

Thanks

We would like to thank to Trabzon Regional Directorate of Forestry and Biological Control Laboratory against Forest Pests for making use of the infrastructure facilities.

References

  • Adesanwo, J.K., Akinloye, A.A., Otemuyiwa, I.O., & Akinpelu, D.A. (2020). Chemical characteristics and biological activities of Annona squamosa fruit pod and seed extracts. Journal of Exploratory Research in Pharmacology, 6(1), 5 15. https://doi.org/10.14218/JERP.2020.00019
  • Adiguzel, A., Sökmen, M., Özkan, H., Ağar, G., Güllüce, M., & Şahin, F. (2009). In vitro antimicrobial and antioxidant activities of methanol and hexane extract of Astragalus species growing in the eastern Anatolia region of Turkey. Turkish journal of Biology, 33(1), 65-71. https://doi.org/10.3906/biy-0805-2
  • Allemailem, K. (2021). Antimicrobial potential of naturally occurring bioactive secondary metabolites. Journal of Pharmacy and Bioallied Sciences, 13(2), 155 162. https://doi.org/10.4103/jpbs.jpbs_753_20
  • Ambarwati, N.S.S., Elya, B., Malik, A., & Hanafi, M. (2017). Evaluation of antimicrobial activities of Garcinia latissima Miq. Stem bark extract. Journal of Young Pharmacists 9(1s), S56. https://doi.org/10.5530/jyp.2017.1s.15
  • Anand, U., Jacobo-Herrera, N., Altemimi, A., Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. https://doi.org/10.3390/metabo9110258
  • Awang, M.A., Aziz, R., Sarmidi, M.R., Abdullah, L., Yong, P.K., & Musa, N.F. (2017). Comparison of different solvents on the extraction of Melastoma malabathricum leaves using soxhlet extraction method. Der Pharmacia Lettre, 8(4), 153 7. https://doi.org/10.22270/jyp.2017.v9i1s.15
  • Bahadori, M., Asnaashari, S., & Nazemiyeh, H. (2019). Fatty acid profile of roots and aerial parts of Ruscus hyrcanus woronow. Pharmaceutical Sciences, 25(1), 78 81. https://doi.org/10.15171/ps.2019.12
  • Belcaro, G., Dugall, M., Luzzi, R., Hosoi, M., Pellegrini, L., & Ippolito, E. (2011). Treatment of chronic venous disease with Ruscus aculeatus extract. Angiology, 62(3), 283–289. https://doi.org/10.1177/0003319710379932
  • Bihari, I., Guex, J., Jawień, A., & Szolnoky, G. (2022). Clinical perspectives and management of edema in chronic venous disease what about Ruscus? Medicines, 9(8), 41. https://doi.org/10.3390/medicines9080041
  • Buse–Dragomır, L. (2023). Physiological characteristics of the species Ruscus aculeatus L. adapted to the climatic conditions of the south-westarea of the oltenia region-Romania. Annals of the University of Craiova - Agriculture Montanology Cadastre Series, 53(2), 37-43. https://doi.org/10.52846/aamc.v53i2.1456
  • Dadalioglu, I., & Evrendilek, G.A. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L), and fennel (Foeniculum vulgare) on common foodborne pathogens. Journal of Agricultural and Food Chemistry, 52, 8255–8260. https://doi.org/10.1021/jf049158m
  • D'Antuono, L., & Lovato, A. (2003). Germination trials and domestication potential of three native species with edible sprouts: Ruscus aculeatus L., Tamus communis L. and Smilax aspera L. Acta Horticulturae, 598, 211-218. https://doi.org/10.17660/actahortic.2003.598.31
  • De Rapper, S., Viljoen, A., & van Vuuren, S. (2016). The in vitro antimicrobial effects of Lavandula angustifolia essential oil in combination with conventional antimicrobial agents. Evidence‐Based Complementary and Alternative Medicine, 2016(1), 2752739.
  • de Souza, M.D.G.C., Cyrino, F.Z., & Bouskela, E. (2024). Protective effects of Ruscus extract in combination with ascorbic acid and hesperidine methylchalcone on increased leukocyte-endothelial interaction and macromolecular permeability induced by ischemia reperfusion injury. Clinical Hemorheology and Microcirculation, 88(2), 135 155. https://doi.org/10.3233/CH-242111
  • Demirtaş, A.A., Tetik, F., & Ertuğrul, K. (2020). Conservation strategies for medicinal plants in Turkey: The case of Ruscus aculeatus L. Turkish Journal of Botany, 44(2), 123–131. https://doi.org/10.3906/bot-2001-11
  • Dolina, K., & Łuczaj, Ł. (2014). Wild food plants used on the dubrovnik coast (South-Eastern Croatia). Acta Societatis Botanicorum Poloniae, 83(3), 175 181. https://doi.org/10.5586/asbp.2014.029
  • Edziri, H., Haddad, O., Saïdana, D., Chouchen, S., Harzallah‐Skhiri, F., Mastouri, M., & Flamini, G. (2020). Ruscus hypophyllum L. extracts: Chemical composition, antioxidant, anticoagulant, and antimicrobial activity against a wide range of sensitive and multi-resistant bacteria. Environmental Science and Pollution Research, 27(14), 17063 17071. https://doi.org/10.1007/s11356-020-08159-8
  • Faydaoğlu, E., & Sürücüoğlu, M.S. (2013). Tıbbi ve aromatik bitkilerin antimikrobiyal, antioksidan aktiviteleri ve kullanım olanakları [Antimicrobial and antioxidant activities and usage possibilities of medicinal and aromatic plants]. Fen Bilimleri Enstitüsü Dergisi, 6(2), 233-265.
  • Hussin, N.N., Adzahar, N.S., Lee, T.C., & Venugopal, J.R. (2021). Chemical constituents profiles and antibacterial activity of Psidium guajava leaves essential oil. Materials Science Forum, 1025, 242-246.
  • Ionkova, I. (2009). Biotechnological approaches for the production of bioactive saponins from Ruscus aculeatus L. Pharmacognosy Reviews, 3(5), 32–37.
  • Jamil, N., & Pa’ee, F. (2018). Antimicrobial activity from leaf, flower, stem, and root of Clitoria ternatea–A review. In AIP Conference proceedings (Vol. 2002, No. 1) AIP Publishing.
  • Jj, G., Vega, D., Avril, L., Boussetta, S., & Taïeb, C. (2009). Assessment of quality of life in Mexican patients suffering from chronic venous disorder – impact of oral Ruscus aculeatus-hesperidin–methyl-chalcone–ascorbic acid treatment – “quality study”. Phlebology the Journal of Venous Disease, 24(4), 157-165. https://doi.org/10.1258/phleb.2009.008066
  • Jones, W.P., & Kinghorn, A.D. (2012). Extraction of plant secondary metabolites. Natural Products Isolation, 341-366.
  • Kaya, E., Akbaş, P., Ceyhan, G., Erdem, T., & Alkan, H. (2020). Determination the fatty acid composition of the Rumex patientia L. leaves and in vitro antimicrobial activity of their different extracts. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(2), 362-367. https://doi.org/10.19113/sdufenbed.643154
  • Kaya, A., & Demirci, B. (2018). Ethnobotanical survey of medicinal plants in Eastern Anatolia. Turkish Journal of Botany, 42(3), 321–330. https://doi.org/10.3906/bot-1801-45
  • Kebeli, F., & Çelikel, F.G. (2024). Ruscus Species Distributed in Türkiye. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(Special Issue), 68-76.
  • Khiem, D., Cương, H., Hang, N., Huyen, P., & Hoàng, N. (2018). Micropropagation of Ruscus aculeatus L. Vietnam Journal of Biotechnology, 16(1), 99 105. https://doi.org/10.15625/1811-4989/16/1/13484
  • Longo, L., & Vasapollo, G. (2004). Determination of anthocyanins in Ruscus aculeatus L. berries. Journal of Agricultural and Food Chemistry, 53(2), 475 479. https://doi.org/10.1021/jf0487250.
  • Luís, Â., Domingues, F., & Duarte, A.P. (2011). Bioactive compounds, RP-HPLC analysis of phenolics, and antioxidant activity of some Portuguese shrub species extracts. Natural Product Communications, 6, 1863–1872.
  • Masullo, M., Pìzza, C., & Piacente, S. (2016). Ruscus genus: a rich source of bioactive steroidal saponins. Planta Medica, 82(18), 1513-1524. https://doi.org/10.1055/s-0042-119728
  • Napolitano, A., Muzashvili, T., Perrone, A., Pizza, C., Kemertelidze, É., & Piacente, S. (2011) Steroidal glycosides from Ruscus ponticus. Phytochemistry, 72(7), 651 661. https://doi.org/10.1016/j.phytochem.2011.01.033
  • Nath, E., & Kültür, Ş. (2022). An ethnobotanical study of medicinal plants in Savaştepe (Balıkesir Turkey). Clinical and Experimental Health Sciences, 12(4), 954 980. https://doi.org/10.33808/clinexphealthsci.1026438
  • Naidoo, C.M., Gangaram, S., Naidoo, Y., & Dewir, Y.H. (2024). Bioactive Compounds and Biological Activities of Ruscus Species. In Bioactive Compounds in the Storage Organs of Plants (pp. 671-690). Springer Nature Switzerland.
  • Öztürk, M., Altay, V., & Eminağaoğlu, Ö. (2015). Traditional uses of medicinal plants in Turkey. Journal of Ethnopharmacology, 175, 241 256. https://doi.org/10.1016/j.jep.2015.09.008
  • Petrova, A., Vladimirov, V., & Georgiev, V. (2015). Distribution and conservation status of Ruscus aculeatus L. in Bulgaria. Phytologia Balcanica, 21(2), 203–210.
  • Pavlović, D., Tadić, V. M., Dobrić, S., & Zdunić, G. (2013). Influence of ecological factors on the content of secondary metabolites in medicinal plants. Archives of Biological Sciences, 65(4), 1571–1576. https://doi.org/10.2298/ABS1304571P
  • Rodrigues, J., Fernandes, Â., Días, M., Pereira, C., Pires, T., Calhelha, R., & Barros, L. (2021). Phenolic compounds and bioactive properties of Ruscus aculeatus L. (Asparagaceae): the pharmacological potential of an underexploited subshrub. Molecules, 26(7), 1882. https://doi.org/10.3390/molecules26071882
  • Sanzo, P., Martino, L., Mancini, E., & Feo, V. (2013). Medicinal and useful plants in the tradition of rotonda, Pollino national park, Southern Italy. Journal of Ethnobiology and Ethnomedicine, 9(1), 19. https://doi.org/10.1186/1746-4269-9-19
  • Saruhan, E., & Öz, M. (2023). Chemical Content and Antimicrobial Activities of Essential Oils Obtained from Plant Parts of Juniperus excelsa M. Bieb. Wood Industry/Drvna Industrija, 74(3), 347-357. https://doi.org/10.5552/drvind.2023.0082
  • Semde, Z., Koudou, J., Zongo, C., Somda, M.K., Figueredo, G., Ganou, L., & Traore, A.S. (2018). Chemical composition, antioxidant and antimicrobial activities of the essential oil of Detarium microcarpum Guill. and Perr. Leaves from Burkina faso. International Journal of Pharmaceutical Science and Research, 9(3), 956- 64. https://doi.org/10.13040/IJPSR.0975-8232.9(3).956-64
  • Schulz, V., Hänsel, R., & Tyler, V.E. (2004). Rational Phytotherapy: A Reference Guide for Physicians and Pharmacists. Springer.
  • Sticher, O. (2008). Natural product research: A new perspective. Natural Product Reports, 25(3), 517–554. https://doi.org/10.1039/B703175C
  • Niu, S.L., Hao, J.H., Xu, J.Y., Guan, Q., Zhou, Z.C., Lv, T.M., & Sun, Y.T. (2023). Aculebiphenyl A–B, new biphenyl derivatives from Ruscus aculeatus. Journal of Asian Natural Products Research, 25(11), 1076 1084. https://doi.org/10.1080/10286020.2023.2254702
  • Petrova, A., Zhelev, I., & Georgieva, T. (2021). Pharmacological and phytochemical profile of Ruscus aculeatus L.: A mini-review. Pharmacognosy Reviews, 15(29), 1–6.
  • Pittler, M. H., & Ernst, E. (2004). Horse-chestnut seed extract for chronic venous insufficiency: A meta-analysis of randomized clinical trials. Archives of Dermatology, 140(6), 686–691. https://doi.org/10.1001/archderm.140.6.686
  • Schaefer, E., Piquette, J., & Devillé, C. (2003). Efficacy and safety of a Ruscus extract in chronic venous insufficiency: A double-blind, placebo-controlled trial. Phytomedicine, 10(2–3), 241–247. https://doi.org/10.1078/094471103321659862
  • Sobolewska, D., Galanty, A., Grabowska, K., Makowska-Wąs, J., Wróbel‐Biedrawa, D., & Podolak, I. (2020). Saponins as cytotoxic agents: an update (2010–2018). part i—steroidal saponins. Phytochemistry Reviews, 19(1), 139-189. https://doi.org/10.1007/s11101-020-09661-0
  • Şarışen, Ö., & Çalışkan, D. (2005). Fitoterapi: Bitkilerle Tedaviye Dikkat [Phytotherapy: Be Careful with Plant Treatment]. Sted, 14 (8), 182-187.
  • Tadtong, S., Puengseangdee, C., Prasertthanawut, S., & Hongratanaworakit, T. (2016). Antimicrobial constituents and effects of blended eucalyptus, rosemary, patchouli, pine, and cajuput essential oils. Natural Product Communications, 11(2), 1934578X1601100234.
  • Thambiraj, J. (2017). Study of Antimicrobial Activity of The Folklore Medicinal Plant, Acalypha frutıcosa Forssk. Kongunadu Research Journal, 4(2), 57-60.
  • Urbanek, T. (2017). The clinical efficacy of Ruscus aesculatus extract: Is there enough evidence to update the pharmacotherapy guidelines for chronic venous disease?. Phlebological Review, 25(1), 75-80. https://doi.org/10.5114/pr.2017.70594
  • Vanscheidt, W., Jost, V., Wolna, P., Lücker, P., Müller, A., Theurer, C., & Grützner, K. (2011). Efficacy and safety of a butcher’s broom preparation (Ruscus aculeatus L. extract) compared to placebo in patients suffering from chronic venous insufficiency. Arzneimittelforschung, 52(04), 243-250. https://doi.org/10.1055/s-0031-1299887
  • Vieira, A. (2010). A comparison of traditional anti-inflammation and anti-infection medicinal plants with current evidence from biomedical research: results from a regional study. Pharmacognosy Research, 2(5), 293. https://doi.org/10.4103/0974-8490.72326
  • Walasek-Janusz, M., Bajena, A., Nurzyńska-Wierdak, R., & Skalicka-Woźniak, K. (2022). Extraction and analysis of ruscogenins from butcher’s broom (Ruscus aculeatus L.) rhizomes using HPLC. Acta Scientiarum Polonorum Hortorum Cultus, 21(6), 143-154. https://doi.org/10.24326/asphc.2022.6.12
  • Wang, L., Wang, Y., & Sun, G. (2018). Comparison of different extraction methods for saponins from medicinal plants. Journal of Chromatography B, 1092, 1 8. https://doi.org/10.1016/j.jchromb.2018.05.010
  • Yılmaz, G., Şahin, F., & Ayaz, F. (2020). Wound healing potential of Ruscus species in traditional medicine. Phytotherapy Research, 34(7), 1501 1509. https://doi.org/10.1002/ptr.6623
There are 56 citations in total.

Details

Primary Language English
Subjects Microbiology (Other)
Journal Section Articles
Authors

Ali Soydinç 0000-0002-1032-1807

Rasim Aktürk This is me 0009-0005-7037-9559

Seda Biryol 0000-0003-0881-5004

Mehtap Usta 0000-0001-7656-5655

Early Pub Date September 1, 2025
Publication Date October 20, 2025
Submission Date January 30, 2025
Acceptance Date June 21, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Soydinç, A., Aktürk, R., Biryol, S., Usta, M. (2025). Investigation of antimicrobial effects of essential oil and secondary metabolite extraction from Ruscus aculeatus L. (Asparagaceae). International Journal of Secondary Metabolite, 12(4), 832-846.
International Journal of Secondary Metabolite

e-ISSN: 2148-6905