Research Article
BibTex RIS Cite

Effects of biogenic silver nanoparticles applied to Nepeta cataria L. seeds on sterilization and germination

Year 2025, Volume: 12 Issue: 4, 799 - 807, 05.12.2025
https://doi.org/10.21448/ijsm.1699267

Abstract

Plant tissue culture applications are carried out under sterile conditions. Culture media must be created without biological contamination and must be maintained aseptically. Contaminations that occur in the culture media may affect experimental results by preventing adequate nutrition and the development of plants. Contamination is mostly caused by microorganisms found on the surfaces of plant tissues used in culture processes. For this reason, explants must be subjected to sterilization processes before culture processes. However, sterilants used for this purpose may have toxic effects on plant tissues, and in recent years, there has been a need to discover effective sterilants that do not show toxic effects. This study aimed to determine the potential of silver nanoparticles (AgNP) in surface sterilization processes for sterile in vitro germination of Nepeta cataria L. seeds. In order to determine the most appropriate concentration and time to be applied to plant seeds, five different concentrations (0, 75, 100, 125, 150 mg/L) and three different times (5, 10, 20 min) were tested. As a result of the applications, it was determined that the lowest contamination was in the seeds that were kept in 70% ethyl alcohol for 3 min and then in AgNP solutions at a concentration of 150 mg/L for 20 min. No toxicity symptoms were observed in the plants obtained. The results show that AgNPs can be used to obtain in vitro sterile plants.

References

  • Aćimović, M., Zeremski, T., Kiprovski, B., Brdar-Jokanović, M., Popović, V., Koren, A., & Sikora, V. (2021). Nepeta cataria–cultivation, chemical composition and biological activity. Journal of Agronomy, Technology and Engineering Management (JATEM), 4(4), 620-634. https://fiver.ifvcns.rs/handle/123456789/2344
  • Bao, H.G., Tung, H.T., Van, H.T., Bien, L.T., Khai, H.D., Mai, N.T.N., Luan, V.Q., Cuong D.M., Nam, N.B., Vinh, B.V.T., & Nhut, D.T. (2022). Copper nanoparticles enhanced surface disinfection, induction and maturation of somatic embryos in tuberous begonias (Begonia× tuberhybrida Voss) cultured in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 151(2), 385-399. https://link.springer.com/article/10.1007/s11240-022-02360-y
  • Beykaya, M., & Çağlar, A. (2016). Bitkisel özütler kullanılarak gümüş-nanopartikül (AgNP) sentezlenmesi ve antimikrobiyal etkinlikleri üzerine bir araştırma [An investigation on synthesis of silver-nanoparticles (AgNP) and their antimicrobial effectiveness by using herbal extracts]. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 631-641. https://dergipark.org.tr/en/pub/akufemubid/issue/43551/532448
  • Bharti, N., Kapoor, B., Shaunak, I., Sharma, P., & Sharma, R. (2018). Effect of sterilization treatments on in vitro culture establishment of tomato (Solanum lycopersicum L.). International Journal of Chemical Studies, 6(5), 1165 1168. https://www.chemijournal.com/archives/?year=2018&vol=6&issue=5&ArticleId=3712&si
  • Cheon, J.Y., Kim, S.J., Rhee, Y.H., Kwon, O.H., & Park, W.H. (2019). Shape-dependent antimicrobial activities of silver nanoparticles. International Journal of Nanomedicine, 2773-2780. https://www.tandfonline.com/doi/full/10.2147/IJN.S196472
  • Fazil, H., & Porwal, O. (2022). Catnip (Nepeta cataria L.): recent advances in pharmacognosy, cultivation, chemical composition and biological activity. Journal of Drug Delivery & Therapeutics, 12(4-S), 254-263. https://jddtonline.info/index.php/jddt/issue/view/103
  • Gomes, E.N., Yuan, B., Patel, H.K., Lockhart, A., Wyenandt, C.A., Wu, Q., & Simon, J.E. (2024). Implications of the propagation method for the phytochemistry of Nepeta cataria L. throughout a growing season. Molecules, 29(9), 2001. https://www.mdpi.com/1420-3049/29/9/2001
  • Ibrahim, M.E., El-Sawi, S.A., & Ibrahim, F.M. (2017). Nepeta cataria L, one of the promising aromatic plants in Egypt: Seed germination, growth and essential oil production. Journal of Materials and Environmental Sciences, 8(6), 1990 1995. https://www.jmaterenvironsci.com/Document/vol8/vol8_N6/211-JMES-2812-Ibrahim.pdf
  • Kim, J.S., Kuk, E., Nam Yu, N.K., Kim, J., Park, J.S., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C., Kim, Y.K., Lee, Y.S., Jeong, D.H., & Cho, M.H. (2007). Kim, J. Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, biology and medicine, 3(1), 95-101. https://pubmed.ncbi.nlm.nih.gov/17379174/
  • Kırmusaoğlu, S., & Cansız, E. İ. (1997). Nanoteknolojide nano gümüşün antibakteriyel özelliği [Antibacterial properties of nano silver in nanotechnology]. Haliç Üniversitesi Fen Bilimleri Dergisi, 1(1), 87-94. https://dergipark.org.tr/en/pub/hafebid/issue/39104/423141
  • Kocaçalışkan, İ. (2021). Doku ve hücre kültürü teknikleri [Tissue and cell culture techniques] (ISBN: 9786053206187). Nobel 211 Akademik Yayıncılık.
  • Mandeh, M., Omidi, M., & Rahaie, M. (2012). In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biological trace element research, 150, 376-380. https://link.springer.com/article/10.1007/s12011-012-9480-z
  • Manosalva, N., Tortella, G., Cristina Diez, M., Schalchli, H., Seabra, A.B., Durán, N., & Rubilar, O. (2019). Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World Journal of Microbiology and Biotechnology, 35, 1-9. https://link.springer.com/article/10.1007/s11274-019-2664-3
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473 497. https://onlinelibrary.wiley.com/doi/10.1111/j.1399-3054.1962.tb08052.x
  • Murthy, M.K., Khandayataray, P., Samal, D., & Laha, R. (2019). Effects of surface sterilizing agents, sucrose and plant growth regulatory hormone concentration levels on micropropagation of Bacopa monnieri L. Asian Journal of Research in Botany, 2(1), 83-94. https://journalajrib.com/index.php/AJRIB/article/view/9
  • Nadeem, A., Shahzad, H., Ahmed, B., Muntean, T., Waseem, M., & Tabassum, A. (2022). Phytochemical profiling of antimicrobial and potential antioxidant plant: Nepeta cataria. Frontiers in Plant Science, 13, 969316. https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.969316/full
  • Oyar, P. (2014). Diş hekimliğinde kullanılan nanopartiküller, kullanım alanları ve biyouyumluluk [Nanoparticles in dentistry, their applications, and biocompatibility]. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 24(1). 125 133. https://dergipark.org.tr/tr/pub/ataunidfd/issue/2523/32383
  • Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances, 27(1), 76 83. https://pubmed.ncbi.nlm.nih.gov/18854209/
  • Ramalashmi, K., Prasanna, V.K., Magesh, K., Sanjana, R., Siril, J.S., & Ravibalan, K. (2018). A potential surface sterilization technique and culture media for the isolation of endophytic bacteria from Acalypha indica and its antibacterial activity. Journal of Medicinal Plants Studies, 6, 181-4. https://www.plantsjournal.com/archives/2018/vol6issue1/PartC/6-1-17-361.pdf
  • Rhaman, M.S., Tania, S.S., Imran, S., Rauf, F., Kibria, M.G., Ye, W., Hasanuzzaman M., & Murata, Y. (2022). Seed priming with nanoparticles: An emerging technique for improving plant growth, development, and abiotic stress tolerance. Journal of Soil Science and Plant Nutrition, 22(4), 4047-4062. https://link.springer.com/article/10.1007/s42729-022-01007-3
  • Sharma, A., Nayik, G.A., & Cannoo, D.S. (2019). Pharmacology and toxicology of Nepeta cataria (Catmint) species of genus Nepeta: A review. In M. Ozturk & K. Hakeem (Eds.) Plant and Human Health (Volume 3, pp. 285 299). Springer. https://link.springer.com/chapter/10.1007/978-3-030-04408-4_13
  • Siddiqi, K.S., Husen, A., & Rao, R.A. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology, 16, 1 28. https://pubmed.ncbi.nlm.nih.gov/29452593/
  • Siddiqi, K.S., & Husen, A. (2022). Plant response to silver nanoparticles: a critical review. Critical Reviews in Biotechnology, 42(7), 973 990. https://pubmed.ncbi.nlm.nih.gov/34521281/
  • Taghizadeh, M., & Solgi, M. (2014). The application of essential oils and silver nanoparticles for sterilization of bermudagrass explants in in vitro culture. International Journal of Horticultural Science and Technology, 1(2), 131 140. https://ijhst.ut.ac.ir/article_52784.html
  • Tunca, E.Ü. (2015). Nanoteknolojinin temeli nanopartiküller ve nanopartiküllerin fitoremediasyonu [Nanoparticles as the base of nanotechnology and phytoremediation of nanoparticles]. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 23 34. https://dergipark.org.tr/tr/download/article-file/113927
  • Verma, S.K., Kumar, P., Mishra, A., Khare, R., & Singh, D. (2024). Green nanotechnology: Illuminating the effects of bio-based nanoparticles on plant physiology. Biotechnology for Sustainable Materials, 1(1), 1. https://biotechsustainablematerials.biomedcentral.com/articles/10.1186/s44316-024-00001-2
There are 26 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry, Plant Biotechnology, Microbiology (Other)
Journal Section Research Article
Authors

Burcu Çetin 0000-0003-1465-1464

Çiğdem Ay 0000-0002-8283-0678

Aslı Aktay This is me 0009-0006-5058-7198

Early Pub Date September 1, 2025
Publication Date December 5, 2025
Submission Date May 14, 2025
Acceptance Date July 8, 2025
Published in Issue Year 2025 Volume: 12 Issue: 4

Cite

APA Çetin, B., Ay, Ç., & Aktay, A. (2025). Effects of biogenic silver nanoparticles applied to Nepeta cataria L. seeds on sterilization and germination. International Journal of Secondary Metabolite, 12(4), 799-807. https://doi.org/10.21448/ijsm.1699267
International Journal of Secondary Metabolite

e-ISSN: 2148-6905