BibTex RIS Cite

A PROFICIENT RANDOMIZED RESPONSE MODEL

Year 2014, Volume: 7 Issue: 3, 87 - 98, 01.09.2014

Abstract

In this article, we have suggested a new randomized response model and its properties have beenstudied. The proposed model is found to be more efficient than the randomized response models studiedby Bar – Lev et al. (2004) and Eichhorn and Hayre (1983). The relative efficiency of the proposed modelhas been studied with respect to the Bar – Lev et al.’s (2004) and Eichhorn and Hayre’s (1983) models.Numerical illustrations are also given in support of the present study

References

  • Barabesi, L., Diana, G. and Perri, P.F. (2014). Horvitz-Thompson estimation with randomized response and non-response. Model Assist. Statist. Appl.,9(1), 3-10.
  • Bar –lev, S.K., Bobovitch, E. and Boukai, B.(2004). A note on Randomized response models for quan- titative data. Metrika, 60, 225-250.
  • Eichhorn, B.H. and Hayre, L.S. (1983). Scrambled randomized response methods for obtaining sensitive quantitative data. Jour. Statist. Plann. Infer., 7,307-316.
  • Fox, J.A. and Tracy, P.E. (1986). Randomized Response: A method of Sensitive Surveys. Newbury Park, CA: SEGE Publications.
  • Grewal, I.S., Bansal, M.L., and Sidhu, S.S. (2005–2006). Population mean corresponding to Horvitz– Thompson’s estimator for multi-characteristics using randomized response technique. Model Assist. Statist. Appl. 1, 215-220.
  • Hong, Z. (2005–2006). Estimation of mean in randomized response surveys when answers are incom- pletely truthful. Model Assist. Statist. Appl., 1,221-230.
  • Mahajan, P.K., Sharma, P. and Gupta, R.K. (2007). Optimum stratiŞcation for allocation proportional to strata totals for scrambled response. Model Assist. Statist. Appl., 2(2), 81-88.
  • Odumade, O. and Singh, S. (2009). Improved Bar-Lev, Bobovitch, and Boukai Randomized Response Models. Commun. Statist. Simul. Comput., 38, 473-502.
  • Odumade, O. and Singh, S. (2010). An alternative to the Bar-Lev, Bobovitch, and Boukai Randomized Response Model. Sociol. Meth. Res., 39(2), 206-221.
  • Perri, P.F. (2008). ModiŞed randomized devices for Simmons’ model. Model Assist. Statist. Appl., 3(3), 233-239.
  • Ryu, J.B., Kim, J.M., Heo, T.Y. and Park, C.G. (2005–2006). On stratiŞed randomized response sam- pling. Model Assist. Statist. Appl., 1, 31-36.
  • Singh, S. and Cheng, S.C. (2009). Utilization of higher order moments of scrambling variables in ran- domized response sampling. Jour. Statist. Plann. Infer., 139, 3377-3380.
  • Singh, H. P. and Tarray, T. A. (2012). A StratiŞed Unknown repeated trials in randomized response sampling. Commun. Korean Statist. Soc., 19, (6), 751-759.
  • Singh, H.P. and Tarray, T.A.(2013). A modiŞed survey technique for estimating the proportion and sensitivity in a dichotomous Şnite population. Int. Jour. Adv. Sci. and Tech. Res., 3(6), 459 - 472.
  • Singh, H.P. and Tarray, T.A. (2014). A dexterous randomized response model for estimating a rare sensitive attribute using Poisson distribution. Statist. Prob. Lett., 90,42-45.
  • Warner, S.L.(1965). Randomized response: A survey technique for eliminating evasive answer bias. Jour. Amer. Statist. Assoc.,60,63-69.
Year 2014, Volume: 7 Issue: 3, 87 - 98, 01.09.2014

Abstract

References

  • Barabesi, L., Diana, G. and Perri, P.F. (2014). Horvitz-Thompson estimation with randomized response and non-response. Model Assist. Statist. Appl.,9(1), 3-10.
  • Bar –lev, S.K., Bobovitch, E. and Boukai, B.(2004). A note on Randomized response models for quan- titative data. Metrika, 60, 225-250.
  • Eichhorn, B.H. and Hayre, L.S. (1983). Scrambled randomized response methods for obtaining sensitive quantitative data. Jour. Statist. Plann. Infer., 7,307-316.
  • Fox, J.A. and Tracy, P.E. (1986). Randomized Response: A method of Sensitive Surveys. Newbury Park, CA: SEGE Publications.
  • Grewal, I.S., Bansal, M.L., and Sidhu, S.S. (2005–2006). Population mean corresponding to Horvitz– Thompson’s estimator for multi-characteristics using randomized response technique. Model Assist. Statist. Appl. 1, 215-220.
  • Hong, Z. (2005–2006). Estimation of mean in randomized response surveys when answers are incom- pletely truthful. Model Assist. Statist. Appl., 1,221-230.
  • Mahajan, P.K., Sharma, P. and Gupta, R.K. (2007). Optimum stratiŞcation for allocation proportional to strata totals for scrambled response. Model Assist. Statist. Appl., 2(2), 81-88.
  • Odumade, O. and Singh, S. (2009). Improved Bar-Lev, Bobovitch, and Boukai Randomized Response Models. Commun. Statist. Simul. Comput., 38, 473-502.
  • Odumade, O. and Singh, S. (2010). An alternative to the Bar-Lev, Bobovitch, and Boukai Randomized Response Model. Sociol. Meth. Res., 39(2), 206-221.
  • Perri, P.F. (2008). ModiŞed randomized devices for Simmons’ model. Model Assist. Statist. Appl., 3(3), 233-239.
  • Ryu, J.B., Kim, J.M., Heo, T.Y. and Park, C.G. (2005–2006). On stratiŞed randomized response sam- pling. Model Assist. Statist. Appl., 1, 31-36.
  • Singh, S. and Cheng, S.C. (2009). Utilization of higher order moments of scrambling variables in ran- domized response sampling. Jour. Statist. Plann. Infer., 139, 3377-3380.
  • Singh, H. P. and Tarray, T. A. (2012). A StratiŞed Unknown repeated trials in randomized response sampling. Commun. Korean Statist. Soc., 19, (6), 751-759.
  • Singh, H.P. and Tarray, T.A.(2013). A modiŞed survey technique for estimating the proportion and sensitivity in a dichotomous Şnite population. Int. Jour. Adv. Sci. and Tech. Res., 3(6), 459 - 472.
  • Singh, H.P. and Tarray, T.A. (2014). A dexterous randomized response model for estimating a rare sensitive attribute using Poisson distribution. Statist. Prob. Lett., 90,42-45.
  • Warner, S.L.(1965). Randomized response: A survey technique for eliminating evasive answer bias. Jour. Amer. Statist. Assoc.,60,63-69.
There are 16 citations in total.

Details

Other ID JA33AD39VY
Journal Section Research Article
Authors

Tanveer A. Tarray This is me

Housila P. Singh. This is me

Publication Date September 1, 2014
Published in Issue Year 2014 Volume: 7 Issue: 3

Cite

APA Tarray, T. A., & Singh., H. P. (2014). A PROFICIENT RANDOMIZED RESPONSE MODEL. Istatistik Journal of The Turkish Statistical Association, 7(3), 87-98.
AMA Tarray TA, Singh. HP. A PROFICIENT RANDOMIZED RESPONSE MODEL. IJTSA. September 2014;7(3):87-98.
Chicago Tarray, Tanveer A., and Housila P. Singh. “A PROFICIENT RANDOMIZED RESPONSE MODEL”. Istatistik Journal of The Turkish Statistical Association 7, no. 3 (September 2014): 87-98.
EndNote Tarray TA, Singh. HP (September 1, 2014) A PROFICIENT RANDOMIZED RESPONSE MODEL. Istatistik Journal of The Turkish Statistical Association 7 3 87–98.
IEEE T. A. Tarray and H. P. Singh., “A PROFICIENT RANDOMIZED RESPONSE MODEL”, IJTSA, vol. 7, no. 3, pp. 87–98, 2014.
ISNAD Tarray, Tanveer A. - Singh., Housila P. “A PROFICIENT RANDOMIZED RESPONSE MODEL”. Istatistik Journal of The Turkish Statistical Association 7/3 (September 2014), 87-98.
JAMA Tarray TA, Singh. HP. A PROFICIENT RANDOMIZED RESPONSE MODEL. IJTSA. 2014;7:87–98.
MLA Tarray, Tanveer A. and Housila P. Singh. “A PROFICIENT RANDOMIZED RESPONSE MODEL”. Istatistik Journal of The Turkish Statistical Association, vol. 7, no. 3, 2014, pp. 87-98.
Vancouver Tarray TA, Singh. HP. A PROFICIENT RANDOMIZED RESPONSE MODEL. IJTSA. 2014;7(3):87-98.