Research Article
BibTex RIS Cite

Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications

Year 2021, Volume: 13 Issue: 1, 12 - 28, 02.01.2021

Abstract

In this paper, a new probability distribution called Exponentiated Gompertz Exponential distribution was introduced which can help researchers to model different types of data sets. In proposed distribution we introduce a new shape parameter to Gompertz Exponential distribution, varied its tail weight such that it enhances its flexibility and performance. Furthermore, the maximum likelihood method was used in estimating the model’s parameters. Simulation method was used to investigate the behaviours of the parameters of the proposed distribution; the results showed that the mean square error and standard error for the chosen parameter values decrease as the sample size increases. The proposed distribution was tested on real life data, the results showed that EGoE performed better than the existing distribution in the literature and a strong competitor to other distributions of the same class. The results also showed that the distribution can be used as an alternative model in modelling lifetime processes.

Thanks

I want to appreciate the University of Lagos for their encouragement

References

  • Oguntunde, P. E, Khaleel, M. A, Ahmed, M. T, Adejumo, A. O and Odetunmibi, O. A. (2017). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Journal of Modelling and Simulation in Engineering, https://doi.org/10.1155/2017/6043169.
  • Adewara J. A., Adeyeye J. S. and Thron, C. P. (2019). Properties and Applications of the Gompertz Distribution. International Journal of Mathematical Analysis and Optimization: Theory and Applications, 2019(1), 443 – 454.
  • Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B and Ghosh, I. (2016). The Gompertz G family of distributions. Journal of Statistics Theory and Practice, 11(1), 179 – 207.
  • El – Gohary, A., Alshamrani, A., and Naif Al – Otaibi, A. (2013). The Generalized Gompertz distribution. Applied Mathematics Modelling , 37(1 – 2), 13 – 24.
  • Jafari A. A., Tahmasebi, S. and Alizadeh, M. (2014). The Beta Gompertz distribution. Revista Colombiana de Estadistica, 37(1), 141 – 158.
  • Pollard, J. H. and Valkovics, E. J. (1992). The Gompertz distribution and its applications. Genus, 40(3), 15 – 28.
  • Rama, S., Kamlesh, K. S., Ravi, S. & Tekie, A. L. (2017). A three – Parameter Lindley Distribution. American Journal of Mathematics and Statistics, 7(1), 15 – 26, DOI: 10.5923/j.ajms.20170701.
  • Khaleel, M. A., Oguntunde, P. E., Ahmed, M. T., Ibrahim, N. A. & Loh, Y. F. (2020). The Gompertz Flexible Weibull Distribution and its Applications. Malaysian Journal of Mathematical Sciences, 14(1), 169–190.
Year 2021, Volume: 13 Issue: 1, 12 - 28, 02.01.2021

Abstract

References

  • Oguntunde, P. E, Khaleel, M. A, Ahmed, M. T, Adejumo, A. O and Odetunmibi, O. A. (2017). A New Generalization of the Lomax Distribution with Increasing, Decreasing, and Constant Failure Rate. Journal of Modelling and Simulation in Engineering, https://doi.org/10.1155/2017/6043169.
  • Adewara J. A., Adeyeye J. S. and Thron, C. P. (2019). Properties and Applications of the Gompertz Distribution. International Journal of Mathematical Analysis and Optimization: Theory and Applications, 2019(1), 443 – 454.
  • Alizadeh, M., Cordeiro, G. M., Pinho, L. G. B and Ghosh, I. (2016). The Gompertz G family of distributions. Journal of Statistics Theory and Practice, 11(1), 179 – 207.
  • El – Gohary, A., Alshamrani, A., and Naif Al – Otaibi, A. (2013). The Generalized Gompertz distribution. Applied Mathematics Modelling , 37(1 – 2), 13 – 24.
  • Jafari A. A., Tahmasebi, S. and Alizadeh, M. (2014). The Beta Gompertz distribution. Revista Colombiana de Estadistica, 37(1), 141 – 158.
  • Pollard, J. H. and Valkovics, E. J. (1992). The Gompertz distribution and its applications. Genus, 40(3), 15 – 28.
  • Rama, S., Kamlesh, K. S., Ravi, S. & Tekie, A. L. (2017). A three – Parameter Lindley Distribution. American Journal of Mathematics and Statistics, 7(1), 15 – 26, DOI: 10.5923/j.ajms.20170701.
  • Khaleel, M. A., Oguntunde, P. E., Ahmed, M. T., Ibrahim, N. A. & Loh, Y. F. (2020). The Gompertz Flexible Weibull Distribution and its Applications. Malaysian Journal of Mathematical Sciences, 14(1), 169–190.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Adewara Ademola 0000-0002-7085-2992

John Adeyeye This is me

Mundher Khaleel

Olubisi Aako This is me

Publication Date January 2, 2021
Acceptance Date August 24, 2020
Published in Issue Year 2021 Volume: 13 Issue: 1

Cite

APA Ademola, A., Adeyeye, J., Khaleel, M., Aako, O. (2021). Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. Istatistik Journal of The Turkish Statistical Association, 13(1), 12-28.
AMA Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. IJTSA. January 2021;13(1):12-28.
Chicago Ademola, Adewara, John Adeyeye, Mundher Khaleel, and Olubisi Aako. “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”. Istatistik Journal of The Turkish Statistical Association 13, no. 1 (January 2021): 12-28.
EndNote Ademola A, Adeyeye J, Khaleel M, Aako O (January 1, 2021) Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. Istatistik Journal of The Turkish Statistical Association 13 1 12–28.
IEEE A. Ademola, J. Adeyeye, M. Khaleel, and O. Aako, “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”, IJTSA, vol. 13, no. 1, pp. 12–28, 2021.
ISNAD Ademola, Adewara et al. “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”. Istatistik Journal of The Turkish Statistical Association 13/1 (January 2021), 12-28.
JAMA Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. IJTSA. 2021;13:12–28.
MLA Ademola, Adewara et al. “Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications”. Istatistik Journal of The Turkish Statistical Association, vol. 13, no. 1, 2021, pp. 12-28.
Vancouver Ademola A, Adeyeye J, Khaleel M, Aako O. Exponentiated Gompertz Exponential (Egoe) Distribution: Derivation, Properties and Applications. IJTSA. 2021;13(1):12-28.