Research Article
BibTex RIS Cite

Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream

Year 2018, Volume: 1 Issue: 3, 1 - 7, 22.12.2018

Abstract

Histopathological indices have been largely used as biomarkers in the monitoring of fish health status during exposure to heavy metals, both in the experimental and environmental studies. The aims of the present study was to provide baseline data on the prevalence of histopathological liver lesions in marine fishes (case study of liver histopathology at mercury exposure) under experimental mercury exposure and to compare the sampling areas in terms of the types and prevalence of lesions present, for monitoring purposes. Experimental study was at seawater re-circulatory tanks. Mercury concentrations were determined using a standard cold vapor atomic absorption. Histopathological analyses were done in tissue processor and the slides were stained with haematoxylin and counter stained with eosin. There were many liver lesions in both area include enlarged and lateral nuclei, nuclear degeneration and vacuolation; oncotic, apoptic, focal, massive, centrilobular and periportal necrosis; atrophy, lipidosis, hydropic and cloudy swelling, oval cell proliferation; bile stagnation, dilation of sinusoid, intracellular edema and dark granules. In conclusion the present investigation indicated that mercury is a toxic substance in seabream and the sub-lethal mercury concentrations tested may cause several changes in the histological indices of the studied fish and we can use these changes as biomarkers of mercury detection. 

References

  • Adams SM. Biological indicators of aquatic ecosystem stress. Amer Fish Soc. 2002; 3: 104–112.
  • Cengiz EI, Unlu E, Balci K. The histopathological effects of thiodan on the liver and gut of mosquitofish, Gambusia affinis. J Environ Sci Health B 2001; 36: 75–85.
  • Di Giulio RT, Hinton DE. The Toxicology of Fishes. Taylor & Francis Group. 2008; 632-884.
  • EPA. 1992: Quality Criteria for Water. U.S. EPA, Office of Water, Criteria and Standards Division, Washington, DC.
  • Fanta E, Rios FS, Romão S, Vianna A, Freiberger S. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol and Environ Saf 2003; 54: 119-130.
  • Figueiredo-Fernandes A, Ferreira-Cardoso JV, GarciaSantos S, Monteiro SM, Carrola J, Matos P, FontainhasFernandes A. Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesqui Vet Bras 2007; 27: 103–109.
  • Jagoe CH, Faivre A, Newman MC. Morphological and morphometric changes in the gills of mosquitofish (Gambusia holbrooki) after exposure to mercury (II). Aquat Toxicol 1996; 34: 163–183.
  • Gabriel UU, Ezeri EU, Amakiri A. Liver and kidney histopathology: Biomakers of No. 1 fuel toxicosis in African catfish, Clarias gariepinus. J Anim Veter Advanc 2007; 6: 379–384.
  • Gernhofer M, Pawet M, Schramm M, Müller E, Triebskorn R. Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J of Aqua Ecoss Stress and Recov 2001; 8: 241-260.
  • Giari L, Manera M, Simoni E, Dezfuli BS. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosph 2007; 67: 1171–1181.
  • Gill TS, Epple A. Stress related changes in the hematological profile of the American eel (Anguilla rostrata). Ecotoxicol Environ Saf 1993; 25: 227-235
  • Gochefeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 2003; 56: 174–179.
  • Haschek WM, Walling MA, Rousseaux C. fundamental of toxicologic pathology. Academic Press: New York, NY 2010; 211-686.
  • Hedayati A, Safahieh A, Savari A, Ghofleh MJ. Detection of mercury chloride acute toxicity in Yellowfin Seabream (Acanthopagrus latus). World J of Fish and Mar Sci 2010; 2: 86-92.
  • Hinton DE, Segner H, Braunbeck T 2001. Toxic responses of the liver. In: Schlenk D, Bensen WH, Toxicity in Marine and Freshwater Teleosts, vol. 1. Taylor and Francis: London 2001; 224–268.
  • Hodgson E, A textbook of modern toxicology. A John Wiley and Sons: INC publication 2004; 168-582.
  • Mommsen TP, Moon TW, Environmental Toxicology - Biochemistry and Molecular Biology of Fishes. Elsevier Science Ltd 2005; 287-577.
  • Oliveira Ribeiro CA, Belger L, Pelletier E, Rouleau C, Histopathological evidence of inorganic mercury and methylmercury toxicity in the artic charr (Salvelinus alpinus). Environ Res 2002a; 90: 217–225.
  • Oliveira Ribeiro CA, Schatzmann M, Silva de Assis HC, Silva PH, Pelletier E, Evolution of tributyltin sub chronic effects in tropical freshwater fish Astyanax bimaculatus. Ecotoxicol Environ Saf 2002b; 51: 161–167.
  • Oliveira Ribeiro CA, Filipack Neto F, Mela M, Silva PH, Randi MAF, Costa JRA, Pelletier E, Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead and tributyltin chloride. Environ Res 2006; 101: 74–80.
  • Pacheco M, Santos MA, Biotransformation, genotoxic and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotoxicol and Environ Saf 2002; 53: 331-347.
  • Rabitto IS, Costa JR, Silva de Assis HC, Randi MA, Akaishi FM, Pelletier E, Oliveira Ribeiro CA, Dietary Pb(II) and TBT (tributyltin) exposures to neotropical fish Hoplias malabaricus: Histopathological and biochemical findings. Ecotoxicol Environ Saf 2005; 60: 147–156.
  • Rice CD 2001: Fish immunotoxicology: understanding mechanisms of action. In Target Organ Toxicity in Marine and Freshwater Teleosts. Vol. 2. Systems, Schlenk D, Benson W, Taylor and Francis: London, 2001; 96–138.
  • Safahieh A, Hedayati A, Savari A, Marammazi JG, Effect of in vitro exposure to mercury chloride on phosphatase enzymes in Yellowfin sea bream. Amer-Eura J of Toxicol Sci 2010; 2: 162-168.
  • Shi J, Liang L, Jiang G, Jin X, The speciation and bioavailability of mercury in sediments of Haihe River, China Environ Internat 2005; 31: 357–365.
  • Stehr CM, Myers MS, Johnson LL, Spencer S, Stein JE, Toxicopathic liver lesions in English sole and chemical contaminant exposure in Vancouver Harbour, Canada Mar Environ Res 2004; 57: 55–74.
  • Teh SJ, Adams SM, Hinton DE, Histopathological biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquat Toxicol 1997; 37: 51-70.
  • Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S, Histopathological alterations of white sea bass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 2003; 121: 307–320.
  • Timbrell JA, Principles of Biochemical Toxicology. Informa Healthcare: USA Inc, 2009; 176-466.
Year 2018, Volume: 1 Issue: 3, 1 - 7, 22.12.2018

Abstract

References

  • Adams SM. Biological indicators of aquatic ecosystem stress. Amer Fish Soc. 2002; 3: 104–112.
  • Cengiz EI, Unlu E, Balci K. The histopathological effects of thiodan on the liver and gut of mosquitofish, Gambusia affinis. J Environ Sci Health B 2001; 36: 75–85.
  • Di Giulio RT, Hinton DE. The Toxicology of Fishes. Taylor & Francis Group. 2008; 632-884.
  • EPA. 1992: Quality Criteria for Water. U.S. EPA, Office of Water, Criteria and Standards Division, Washington, DC.
  • Fanta E, Rios FS, Romão S, Vianna A, Freiberger S. Histopathology of the fish Corydoras paleatus contaminated with sublethal levels of organophosphorus in water and food. Ecotoxicol and Environ Saf 2003; 54: 119-130.
  • Figueiredo-Fernandes A, Ferreira-Cardoso JV, GarciaSantos S, Monteiro SM, Carrola J, Matos P, FontainhasFernandes A. Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesqui Vet Bras 2007; 27: 103–109.
  • Jagoe CH, Faivre A, Newman MC. Morphological and morphometric changes in the gills of mosquitofish (Gambusia holbrooki) after exposure to mercury (II). Aquat Toxicol 1996; 34: 163–183.
  • Gabriel UU, Ezeri EU, Amakiri A. Liver and kidney histopathology: Biomakers of No. 1 fuel toxicosis in African catfish, Clarias gariepinus. J Anim Veter Advanc 2007; 6: 379–384.
  • Gernhofer M, Pawet M, Schramm M, Müller E, Triebskorn R. Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J of Aqua Ecoss Stress and Recov 2001; 8: 241-260.
  • Giari L, Manera M, Simoni E, Dezfuli BS. Cellular alterations in different organs of European sea bass Dicentrarchus labrax (L.) exposed to cadmium. Chemosph 2007; 67: 1171–1181.
  • Gill TS, Epple A. Stress related changes in the hematological profile of the American eel (Anguilla rostrata). Ecotoxicol Environ Saf 1993; 25: 227-235
  • Gochefeld M. Cases of mercury exposure, bioavailability, and absorption. Ecotoxicol Environ Saf 2003; 56: 174–179.
  • Haschek WM, Walling MA, Rousseaux C. fundamental of toxicologic pathology. Academic Press: New York, NY 2010; 211-686.
  • Hedayati A, Safahieh A, Savari A, Ghofleh MJ. Detection of mercury chloride acute toxicity in Yellowfin Seabream (Acanthopagrus latus). World J of Fish and Mar Sci 2010; 2: 86-92.
  • Hinton DE, Segner H, Braunbeck T 2001. Toxic responses of the liver. In: Schlenk D, Bensen WH, Toxicity in Marine and Freshwater Teleosts, vol. 1. Taylor and Francis: London 2001; 224–268.
  • Hodgson E, A textbook of modern toxicology. A John Wiley and Sons: INC publication 2004; 168-582.
  • Mommsen TP, Moon TW, Environmental Toxicology - Biochemistry and Molecular Biology of Fishes. Elsevier Science Ltd 2005; 287-577.
  • Oliveira Ribeiro CA, Belger L, Pelletier E, Rouleau C, Histopathological evidence of inorganic mercury and methylmercury toxicity in the artic charr (Salvelinus alpinus). Environ Res 2002a; 90: 217–225.
  • Oliveira Ribeiro CA, Schatzmann M, Silva de Assis HC, Silva PH, Pelletier E, Evolution of tributyltin sub chronic effects in tropical freshwater fish Astyanax bimaculatus. Ecotoxicol Environ Saf 2002b; 51: 161–167.
  • Oliveira Ribeiro CA, Filipack Neto F, Mela M, Silva PH, Randi MAF, Costa JRA, Pelletier E, Hematological findings in neotropical fish Hoplias malabaricus exposed to subchronic and dietary doses of methylmercury, inorganic lead and tributyltin chloride. Environ Res 2006; 101: 74–80.
  • Pacheco M, Santos MA, Biotransformation, genotoxic and histopathological effects of environmental contaminants in European eel (Anguilla anguilla L.). Ecotoxicol and Environ Saf 2002; 53: 331-347.
  • Rabitto IS, Costa JR, Silva de Assis HC, Randi MA, Akaishi FM, Pelletier E, Oliveira Ribeiro CA, Dietary Pb(II) and TBT (tributyltin) exposures to neotropical fish Hoplias malabaricus: Histopathological and biochemical findings. Ecotoxicol Environ Saf 2005; 60: 147–156.
  • Rice CD 2001: Fish immunotoxicology: understanding mechanisms of action. In Target Organ Toxicity in Marine and Freshwater Teleosts. Vol. 2. Systems, Schlenk D, Benson W, Taylor and Francis: London, 2001; 96–138.
  • Safahieh A, Hedayati A, Savari A, Marammazi JG, Effect of in vitro exposure to mercury chloride on phosphatase enzymes in Yellowfin sea bream. Amer-Eura J of Toxicol Sci 2010; 2: 162-168.
  • Shi J, Liang L, Jiang G, Jin X, The speciation and bioavailability of mercury in sediments of Haihe River, China Environ Internat 2005; 31: 357–365.
  • Stehr CM, Myers MS, Johnson LL, Spencer S, Stein JE, Toxicopathic liver lesions in English sole and chemical contaminant exposure in Vancouver Harbour, Canada Mar Environ Res 2004; 57: 55–74.
  • Teh SJ, Adams SM, Hinton DE, Histopathological biomarkers in feral freshwater fish populations exposed to different types of contaminant stress. Aquat Toxicol 1997; 37: 51-70.
  • Thophon S, Kruatrachue M, Upatham ES, Pokethitiyook P, Sahaphong S, Jaritkhuan S, Histopathological alterations of white sea bass, Lates calcarifer, in acute and subchronic cadmium exposure. Environ Pollut 2003; 121: 307–320.
  • Timbrell JA, Principles of Biochemical Toxicology. Informa Healthcare: USA Inc, 2009; 176-466.
There are 29 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Articles
Authors

Aliakbar Hedayati This is me

Publication Date December 22, 2018
Published in Issue Year 2018 Volume: 1 Issue: 3

Cite

APA Hedayati, A. (2018). Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream. International Journal of Veterinary and Animal Research, 1(3), 1-7.
AMA Hedayati A. Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream. IJVAR. December 2018;1(3):1-7.
Chicago Hedayati, Aliakbar. “Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream”. International Journal of Veterinary and Animal Research 1, no. 3 (December 2018): 1-7.
EndNote Hedayati A (December 1, 2018) Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream. International Journal of Veterinary and Animal Research 1 3 1–7.
IEEE A. Hedayati, “Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream”, IJVAR, vol. 1, no. 3, pp. 1–7, 2018.
ISNAD Hedayati, Aliakbar. “Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream”. International Journal of Veterinary and Animal Research 1/3 (December 2018), 1-7.
JAMA Hedayati A. Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream. IJVAR. 2018;1:1–7.
MLA Hedayati, Aliakbar. “Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream”. International Journal of Veterinary and Animal Research, vol. 1, no. 3, 2018, pp. 1-7.
Vancouver Hedayati A. Sub-Lethal Effects of Heavy Metals Toxicity on Pathological Lesions of Sea Bream. IJVAR. 2018;1(3):1-7.