In this paper, we investigate about the behavior of unbounded operators in Г-Hilbert Space. Here we discussed about the adjoint, self-adjoint, symmetric and other related properties of densely defined operator. We proof some related theorems and corollaries and will show the characterizations of this operators in Г -Hilbert Space.
Reference1
[1]A. Ghosh,A. Das and T.E. Aman(2017) Representation Theorem on Г-Hilbert Space,International Journal of Mathematics Trends and Technology,52(9):608-615.
Reference2
[2] B.K. Lahiri, 1982.Elements Of Functional Analysis. The World Press Private Limited,Kolkata.
Reference3
[3] B V Limaye .2013, second Edition ,FUNCTIONAL ANALYSIS,New age International (p)Limited,Publishers,Delhi,India.
Reference4
[4] E.Kreyszig, 1978. Introductory Functional Analysis with applications, john wiley and sons.
Reference5
[5] Garayev, M. T., Gürdal, M., & Saltan, S. (2017). Hardy type inequality for reproducing kernel Hilbert space operators and related problems. Positivity, 21(4), 1615-1623.
Reference6
[6] Islam, S . (2020). On Some bounded Operators and their characterizations in Г-Hilbert Space. Cumhuriyet Science Journal, 41 (4) , 854-861 . DOI: 10.17776/csj.747393.
Reference7
[7] John B. Conway .1996, A Course in Functional Analysis. Springer –Verlag New York, INC,USA.
Reference8
[8] L.Debnath, Piotr Mikusinski, 1980. Introduction to Hilbert Space with applications, Academic Press,INC.New York,Toronto.
Reference9
[9] T.E.Aman and D.K.Bhttacharya(2003). Г-Hilbert Space and linear quadratic control problem. Rev.Acad.Canr.Cienc; xv (Nums. 1-2),107-114 (publicado en Julio de 2004) .
Reference1
[1]A. Ghosh,A. Das and T.E. Aman(2017) Representation Theorem on Г-Hilbert Space,International Journal of Mathematics Trends and Technology,52(9):608-615.
Reference2
[2] B.K. Lahiri, 1982.Elements Of Functional Analysis. The World Press Private Limited,Kolkata.
Reference3
[3] B V Limaye .2013, second Edition ,FUNCTIONAL ANALYSIS,New age International (p)Limited,Publishers,Delhi,India.
Reference4
[4] E.Kreyszig, 1978. Introductory Functional Analysis with applications, john wiley and sons.
Reference5
[5] Garayev, M. T., Gürdal, M., & Saltan, S. (2017). Hardy type inequality for reproducing kernel Hilbert space operators and related problems. Positivity, 21(4), 1615-1623.
Reference6
[6] Islam, S . (2020). On Some bounded Operators and their characterizations in Г-Hilbert Space. Cumhuriyet Science Journal, 41 (4) , 854-861 . DOI: 10.17776/csj.747393.
Reference7
[7] John B. Conway .1996, A Course in Functional Analysis. Springer –Verlag New York, INC,USA.
Reference8
[8] L.Debnath, Piotr Mikusinski, 1980. Introduction to Hilbert Space with applications, Academic Press,INC.New York,Toronto.
Reference9
[9] T.E.Aman and D.K.Bhttacharya(2003). Г-Hilbert Space and linear quadratic control problem. Rev.Acad.Canr.Cienc; xv (Nums. 1-2),107-114 (publicado en Julio de 2004) .
Islam, S. I. (2021). AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE. Ikonion Journal of Mathematics, 3(2), 1-8. https://doi.org/10.54286/ikjm.923786
AMA
Islam SI. AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE. ikjm. October 2021;3(2):1-8. doi:10.54286/ikjm.923786
Chicago
Islam, Sahın Injamamul. “AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE”. Ikonion Journal of Mathematics 3, no. 2 (October 2021): 1-8. https://doi.org/10.54286/ikjm.923786.
EndNote
Islam SI (October 1, 2021) AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE. Ikonion Journal of Mathematics 3 2 1–8.
IEEE
S. I. Islam, “AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE”, ikjm, vol. 3, no. 2, pp. 1–8, 2021, doi: 10.54286/ikjm.923786.
ISNAD
Islam, Sahın Injamamul. “AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE”. Ikonion Journal of Mathematics 3/2 (October 2021), 1-8. https://doi.org/10.54286/ikjm.923786.
JAMA
Islam SI. AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE. ikjm. 2021;3:1–8.
MLA
Islam, Sahın Injamamul. “AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE”. Ikonion Journal of Mathematics, vol. 3, no. 2, 2021, pp. 1-8, doi:10.54286/ikjm.923786.
Vancouver
Islam SI. AN INVESTIGATION ON THE BEHAVIOUR OF UNBOUNDED OPERATORS IN Г-HILBERT SPACE. ikjm. 2021;3(2):1-8.