Research Article
BibTex RIS Cite

ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES

Year 2019, Volume: 1 Issue: 1, 18 - 25, 18.01.2019

Abstract

In this paper we introduce some geometrical and topological properties of
weighted Lebesgue sequence spaces 𝑙𝑝,𝑤 as a generalization of the Lebesgue
sequences spaces 𝑙𝑝 , where 𝑤 a weighted sequence.

References

  • Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitziantype Mapping with Applications. Springer Science Business Media, New York.
  • Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
  • Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
  • Clarkson, J., 1936. Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40(3): 396-414.
  • Mitronovic, D.S. , Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
  • Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.
  • Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces L_{p,w}(G), Facta Universitatis, Series: Mathematics and Informatics, In press.
  • Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
  • Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
  • Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
  • Savaş, E., Karakaya, V., Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties . Abstract and Applied Analysis, Article ID 696971, 12 pages doi:10.1155/2009/696971.
Year 2019, Volume: 1 Issue: 1, 18 - 25, 18.01.2019

Abstract

References

  • Agarwal, R. P. and O'Regan, D. and Sagu, D. R. (2009) Fixed Point for Lipschitziantype Mapping with Applications. Springer Science Business Media, New York.
  • Castillo, R. E. and Rafeiro, H. (2016) An Intorductory Course in Lebesgue Spaces. Springer International Publishing, Switzerland.
  • Carother's, N. L. 2005. A Short Course on Banach Spaces Theory. Cambridge University Press, Cambridge.
  • Clarkson, J., 1936. Uniformly Convex Spaces, Trans. Amer. Math. Soc., 40(3): 396-414.
  • Mitronovic, D.S. , Pecaric, J.E. and Fink, A.M. 1993. Classical and New Inequalities in Analysis. Kluver Academic Publishers.
  • Nesin, A. 2012. Analiz 2. Nesin Yayıncılık.
  • Oğur, O. 2018. Some Geometric Properties of Weighted Lebesgue Spaces L_{p,w}(G), Facta Universitatis, Series: Mathematics and Informatics, In press.
  • Yeh, J. 2006. Real Analysis: Theory of Measure and Integration (Second Edition). World Scientific Publishing.
  • Lashkaripour, R. 1997. Lower Bounds and Norms of Operators on Lorentz Sequence Spaces. Doctoral Dissertation. Lancaster.
  • Popa, N. 1981. Basic Sequences and Subspaces in Lorentz Sequence Spaces without Local Convexity. Transactions of the American Mathematical Society, vol 263, no:2, pp 431-456.
  • Savaş, E., Karakaya, V., Şimşek, N. 2009. Some l(p)-type New Sequence Spaces and Their Geometric Properties . Abstract and Applied Analysis, Article ID 696971, 12 pages doi:10.1155/2009/696971.
There are 11 citations in total.

Details

Primary Language English
Journal Section Kabul edilmiş makaleler
Authors

Birsen Sağır

İrem Alaşalvar This is me

Publication Date January 18, 2019
Acceptance Date January 24, 2019
Published in Issue Year 2019 Volume: 1 Issue: 1

Cite

APA Sağır, B., & Alaşalvar, İ. (2019). ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. Ikonion Journal of Mathematics, 1(1), 18-25.
AMA Sağır B, Alaşalvar İ. ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. ikjm. January 2019;1(1):18-25.
Chicago Sağır, Birsen, and İrem Alaşalvar. “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”. Ikonion Journal of Mathematics 1, no. 1 (January 2019): 18-25.
EndNote Sağır B, Alaşalvar İ (January 1, 2019) ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. Ikonion Journal of Mathematics 1 1 18–25.
IEEE B. Sağır and İ. Alaşalvar, “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”, ikjm, vol. 1, no. 1, pp. 18–25, 2019.
ISNAD Sağır, Birsen - Alaşalvar, İrem. “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”. Ikonion Journal of Mathematics 1/1 (January 2019), 18-25.
JAMA Sağır B, Alaşalvar İ. ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. ikjm. 2019;1:18–25.
MLA Sağır, Birsen and İrem Alaşalvar. “ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES”. Ikonion Journal of Mathematics, vol. 1, no. 1, 2019, pp. 18-25.
Vancouver Sağır B, Alaşalvar İ. ON GEOMETRİC PROPERTIES OF WEIGHTED LEBESGUE SEQUENCE SPACES. ikjm. 2019;1(1):18-25.