Research Article
BibTex RIS Cite

BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ

Year 2017, Volume: 2 Issue: 3, 11 - 29, 08.05.2017
https://doi.org/10.25204/iktisad.305628

Abstract

Tedarik
zinciri yönetiminin önemli bir halkasını oluşturan tedarikçi seçimi,
işletmelerin aldığı stratejik kararlardan
biridir ve işletmenin amaç ve hedeflerine ulaşmasında önemli rol oynamaktadır.
Tedarikçi seçimi birçok faktörü göz önüne almayı gerektiren çok aşamalı ve zor
bir karar problemidir. Bundan
dolayı çok sayıda değerlendirme kriteri gerektiren birçok kriterli karar verme
problemidir ve nicel kriterlerin yanında nitel kriterlerin de yer alması artık
bir zorunluluk hâlini almıştır. Bulanık mantık temelli teknikler bu anlamda
nitel kriterlerin değerlendirilmesinde öne çıkmaktadır. Bu çalışmada, Bulanık
Topsis yöntemi kullanılarak tekstil sektöründe faaliyet gösteren bir firmanın
tedarikçi seçim problemi; Kalite, Teslimat, Süreçsel Uygunluk, Performans
Geçmişi, Teknik Yeterlilik kıstaslarına göre incelenmiştir. Çalışma sonunda, bulanık
Topsis yöntemine dayalı tedarikçi sıralamasında A3 firması ilk sırada yer
almıştır.

References

  • Abratt, R. (1986). Industrial buying in high-tech markets. Industrial Marketing Management, 15(4), 293-298. Aiello, G., Enea, M., Galante, G., & Scalia, G. (2009). Clean agent selection approached by fuzzy TOPSIS decision-making method. Fire Technology, 45(4), 405-418.
  • Altaş, İ.H. (1999). Bulanık Mantık:Bulanıklılık Kavramı. Enerji Elektrik Elektromekanik-3e, 80-85. Ashtiani, B., Haghighirad, F., Makui, A., & Ali M. G. (2009). Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Applied Soft Computing, 9(2), 457-461.
  • Awasthi, A., Chauhan, S. S., & Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Systems with Applications, 38(10), 12270-12280.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069.
  • Boer, D. L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European journal of purchasing & supply management, 7(2), 75-89. Boer, D. Luitzen, E. L., and Pierangela M. (2001). "A review of methods supporting supplier selection." European journal of purchasing & supply management 7 (2), 75-89.
  • Chaghooshi, A., Fathi, M. R., Avazpour, R., & Ebrahimi, E. (2014). A Combined Approach for Supplier Selection: Fuzzy AHP and Fuzzy VIKOR.International Journal of Engineering Sciences, 3(8), 67-74.
  • Chen, C.T. (2000). Extensions of the TOPSIS for Group DecisionMaking under Fuzzy Environment, Fuzzy Sets and Systems, 114, 1-9.
  • Chen, J. K., & Chen, I. S. (2010). A pro-performance appraisal system for the university. Expert Systems with Applications, 37(3), 2108-2116.
  • Cheng, J. H., Lee, C. M., & Tang, C. H. (2009). An application of fuzzy Delphi and fuzzy AHP on evaluating wafer supplier in semiconductor industry.WSEAS Transactions on Information Science and Applications, 6(5), 756-767.
  • Cheng, S., Chan, C. W., and Huang, G. H. (2002), Using Multiple Criteria Decision Analysis for Supporting Decisions of Solid Waste Management, Journal of Environment Science Health, 37(6), 975- 990.
  • Chin-N. L., (2010). Supplier selection project using an integrated Delphi, AHP and Taguchi loss function, Prob Stat Forum (03), 118-134.
  • Choy, K. L., Lee, W., & Lo, V. (2003). Design of a case based intelligent supplier relationship management system—the integration of supplier rating system and product coding system. Expert Systems with Applications, 25(1), 87-100.
  • Chu, T. C., & Lin, Y. C. (2003). A fuzzy TOPSIS method for robot selection.The International Journal of Advanced Manufacturing Technology, 21(4), 284-290. Dağdeviren M., Eraslan E., Kurt M. ve Dizdar, E.N. (2005), “Tedarikçi Seçimi Problemine Analitik Ağ Süreci İle Alternatif Bir Yaklaşım”, Teknoloji Dergisi, 8(2): 115-122.
  • Dağdeviren, M. and Eraslan, E. (2008), Promethee Sıralama Yöntemiyle Tedarikçi Seçimi, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 23(1), 69-75.
  • Dickson, G., (1966), An Analysis of Vendor Selection Systems and Decisions., Journal of Purchasing, (2), 28-41.
  • Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283.
  • Forker,L.B., and Mendez, D. An analytical method for benchmarking best peer suppliers. International Journal of Operations and Production Management, 2001, 21(1/2), 195-209.
  • Ghobadian, A., Stainer, A., Liu, J. and Kiss, T. (2016). A computerised vendor rating system. Developments in Logistics and Supply Chain Management. Palgrave Macmillan UK, 2016. 103-112.
  • Ghodsypour, S.H., O’Brien, C. (1996). A Decision Support System for Supplier Selection Using An Integrated Analytic Hierarchy Process And Linear Programming, International Journal of Production Economics, Vol. 56- 57, 199-212.
  • Golmohammadi, D., Robert C. C. and Haleh V. (2009). Neural network application for supplier selection. International Journal of Product Development, 8(3), 252-275.
  • Görener, A. (2009). Kesici Takım Tedarikçisi Seçiminde Analitik Ağ Sürecinin Kullanımı. Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi 4(1), 99-110.
  • Hinkle, C.L., Robinson, P. J., and Green, P. E. (1969). Vendor Evaluation Using Cluster Analysis, Journal of Purchasing, 5(3), 49-58.
  • Hwang, H. S., Moon, C., Chuang, C. L., & Goan, M. J. (2005). Supplier selection and planning model using AHP. international Journal of the Information Systems for Logistics and Management (IJISLM), 1(1), 47-53.
  • JE, T. (2011). Evolving trends of supplier selection criteria and methods. International Journal of Automotive and Mechanical Engineering (IJAME) 4, 437-454.
  • Kannan, D., Sousa J., A. B. L., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research,233(2), 432-447.
  • Karadoğan, A., Başçetin, A., Kahriman, A. and Görgün, S. (2001). Bulanık Küme Teorisinin Yeraltı Üretim Yöntemi Seçiminde Kullanılabilirliği.Türkiye 17. Uluslararası Madencilik Kongresi ve Sergisi-TUMAKS
  • Kassaee, M., Farrokh, M., & Nia, H. H. (2013). An Integrated Hybrid MCDM Approach for Vendor Selection Problem (Case Study: Iran Khodro). Business and Management Horizons, 1(1), 153.
  • Knight, K. G. (2001). A Fuzzy Logic Model for Predicting Commercial Building Design Cost Overruns, Master of Science Thesis, University of Alberta.
  • Kumar, J., and Roy, N. (2010). A hybrid method for vendor selection using neural network. International Journal of Computer Applications, 11(12), 35-40.
  • Lee, A. H. (2009). A fuzzy AHP evaluation model for buyer–supplier relationships with the consideration of benefits, opportunities, costs and risks.International Journal of Production Research, 47(15), 4255-4280.
  • Lehmann, D.R. and O'Shaughnessy, J. (1974). Difference in Attribute Importance for Different Industrial Products, Journal of Marketing, (38), 36-42.
  • Lin, H. T., & Chang, W. L. (2008). Order selection and pricing methods using flexible quantity and fuzzy approach for buyer evaluation. European Journal of Operational Research, 187(2), 415–428.
  • Lin, R. H. (2012). An integrated model for supplier selection under a fuzzy situation. International Journal of Production Economics, 138(1), 55-61.
  • Mandal, A., & Deshmukh, S. G. (1994). Vendor selection using interpretive structural modelling (ISM). International Journal of Operations & Production Management, 14(6), 52-59.
  • Mao, H. (1999), Estimating Labour Productivity Using Fuzzy Set Theory, Master of Science Thesis, University of Alberta.
  • Min, H. (1994). International supplier selection: a multi-attribute utility approach.International Journal of Physical Distribution & Logistics Management, 24(5), 24-33.
  • Min, H., & Galle, W. P. (1999). Electronic commerce usage in business to business purchasing. International Journal of Operations and Production Management, 19(9), 909–921.
  • Ng, W. L. (2008). An efficient and simple model for multiple criteria supplier selection problem. European Journal of Operational Research, 186(3), 1059-1067.
  • Ni, M., Xu, X., & Deng, S. (2007). Extended QFD and data-mining-based methods for supplier selection in mass customization. International Journal of Computer Integrated Manufacturing, 20(2-3), 280-291.
  • Ozcalici, M., Bumin, M. and Ayricay, Y. (2016). "Forecasting the Rankings of Banks by Return on Assets in Turkish Banking Sector with Topsis, Fuzzy Topsis and Grey Relational Analysis Techniques." Global Journal For Research Analysis.
  • Parthiban, P.; Zubar, H.A.; Garge, C.P. (2012). A Multi Criteria Decision Making Approach for Suppliers Selection Procedia Engineering, Volume 38, 2312-2328.
  • Peng J., (2012). Selection of Logistics Outsourcing Service Suppliers Based on AHP, 2012 International Conference on Future Electrical Power and Energy Systems, Energy Procedia, 17, 595 – 601.
  • Phelps, L. (1996). Discriminative validity of the WRAML with ADHD and LD children. Psychology in the Schools, 33, 5-12.
  • Rajesh, R. and, Ravi, V. (2015). Supplier selection in resilient supply chains: A Grey Relational Analysis Approach. Journal of Cleaner Production 86: 343-359.
  • Rajesh, R., & Ravi, V. (2015). Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey–Detamel approach. Computers & Industrial Engineering, 87, 126-139.
  • Safari, H., Fagheyi, M., Ahangari, S., Fathi, M.R. (2012). Applying Promethee Method Based on Entropy Weight for Supplier Selection. Business management and strategy, Vol. 3, No. 1, 97-106.
  • Sahai, M., Agarwal, P., Mishra, V., Bag, M., & Singh, V. (2014). Supplier Selection through Application of DEA. IJEM-International Journal of Engineering and Manufacturing (IJEM), 4(1), 1.
  • Sanchez, J. A. and Gomez, A. T. (2003), Applications of Fuzzy Regression in Actuarial Analysis, The Journal of Risk and Insurance, 70(4), 665-699.
  • Saremi, M. S., Mousavi, F. and Sanayei, A. (2009). TQM consultant selection in SMEs with TOPSIS under fuzzy environment. Expert Systems with Applications 36.2, 2742-2749.
  • Shahroudi, K., & Rouydel, H. (2012). Using a multi-criteria decision making approach (ANP-TOPSIS) to evaluate suppliers in Iran’s auto industry.International Journal of Applied Operational Research-An Open Access Journal, 2(2).
  • Stavropolous, N. (2000). Suppliers in the new economy. Telecommunications Journal of Australia, 50(4), 27–29.
  • Sun, C. C., & Lin, G. T. (2009). Using Fuzzy TOPSIS method for evaluating the competitive advantages of shopping websites. Expert Systems with Applications, 36(9), 11764-11771.
  • Talluri, S., & Narasimhan, R. (2003). Vendor evaluation with performance variability: A max–min approach. European Journal of Operational Research,146(3), 543-552.
  • Tam, M. C., & Tummala, V. R. (2001). An application of the AHP in vendor selection of a telecommunications system. Omega, 29(2), 171-182.
  • Tsai, Y. L., Yao J. Y., and Lin, C. H. (2010). A Dynamic Decision Approach For Supplier Selection Using Ant Colony System. Expert systems with applications 37(12) , 8313-8321.
  • Vahdani, B., Hadipour, H., Sadaghiani, J.S. ve Amiri, M. (2010). Extension of VIKOR method based on interval-valued fuzzy sets, International Journal of Advanced Manufacturing Technology, 47(9-12), 1231- 1239.
  • Wang, J.-W., Cheng, C.-H. and Cheng, H. K. (2008). Fuzzy hierarchical TOPSIS for supplier selection, Applied Soft Computing, doi:10.1016/j.asoc.
  • Wang, Y. J. (2014). The evaluation of financial performance for Taiwan container shipping companies by fuzzy TOPSIS. Applied Soft Computing, 22, 8-35.
  • Weber, C. A., & Ellram, L. M. (1993). Supplier selection using multi-objective programming: a decision support system approach. International Journal of Physical Distribution & Logistics Management, 23(2), 3-14.
  • Weber, C.A., Current, J.R., Benton, W.C. (1991). Vendor selection criteria and methods. European Journal of Operational Research 50(1), 2,18.
  • Wind, Y., Green, P., Robinson, P. (1968). The Determinants of Vendor Selection: The evaluation Function Approach. Journal of Purchasing, 4(3), 29-41.
  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics 1, 28-44.
  • Zadeh, L.A. (1965). Fuzzy Sets, Information and Control, Sayı: 8, 338-353.
  • Zarbini, S. A., Karbasi, A., & Atef-Y. E. (2011). Evaluating and selecting supplier in textile industry using hierarchical fuzzy TOPSIS. Indian Journal of Science and Technology, 4(10), 1322-1334.
  • Zhao, K., & Yu, X. (2011). A case based reasoning approach on supplier selection in petroleum enterprises. Expert Systems with Applications, 38(6), 6839-6847. Zimmermann, H.J., (1991). Fuzzy Set Theory and its Applications, third ed. Kluwer Academic Publishers, Boston, Dordrecht, London.

SUPPLIER SELECTION BY USING FUZZY LOGIC: THE CASE OF GAZIANTEP

Year 2017, Volume: 2 Issue: 3, 11 - 29, 08.05.2017
https://doi.org/10.25204/iktisad.305628

Abstract

Supplier selection,
which forms an important ring of supply chain management, is one of the
strategic decisions taken by businesses and plays an important role in
achieving the objectives of the business. Supplier choice is a multi-stage and
difficult decision problem that needs to take into account many factors.
Therefore; there are many criterion-based decision-making problems that require
a large number of evaluation criteria and qualitative criteria as well as
quantitative criteria have now become a necessity. Fuzzy logic based techniques
come to the fore in the evaluation of qualitative criteria in this sense.
In this study, the problem of supplier selection of a company operating
in the textile sector was analyzed according to Quality, Delivery, Procedural
Compliance, Performance History, Technical Capability criterions via Fuzzy
Topsis method.
At the end of the study, A3 company ranks first in supplier order based
on fuzzy Topsis method.

References

  • Abratt, R. (1986). Industrial buying in high-tech markets. Industrial Marketing Management, 15(4), 293-298. Aiello, G., Enea, M., Galante, G., & Scalia, G. (2009). Clean agent selection approached by fuzzy TOPSIS decision-making method. Fire Technology, 45(4), 405-418.
  • Altaş, İ.H. (1999). Bulanık Mantık:Bulanıklılık Kavramı. Enerji Elektrik Elektromekanik-3e, 80-85. Ashtiani, B., Haghighirad, F., Makui, A., & Ali M. G. (2009). Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Applied Soft Computing, 9(2), 457-461.
  • Awasthi, A., Chauhan, S. S., & Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Systems with Applications, 38(10), 12270-12280.
  • Behzadian, M., Otaghsara, S. K., Yazdani, M., & Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with Applications, 39(17), 13051-13069.
  • Boer, D. L., Labro, E., & Morlacchi, P. (2001). A review of methods supporting supplier selection. European journal of purchasing & supply management, 7(2), 75-89. Boer, D. Luitzen, E. L., and Pierangela M. (2001). "A review of methods supporting supplier selection." European journal of purchasing & supply management 7 (2), 75-89.
  • Chaghooshi, A., Fathi, M. R., Avazpour, R., & Ebrahimi, E. (2014). A Combined Approach for Supplier Selection: Fuzzy AHP and Fuzzy VIKOR.International Journal of Engineering Sciences, 3(8), 67-74.
  • Chen, C.T. (2000). Extensions of the TOPSIS for Group DecisionMaking under Fuzzy Environment, Fuzzy Sets and Systems, 114, 1-9.
  • Chen, J. K., & Chen, I. S. (2010). A pro-performance appraisal system for the university. Expert Systems with Applications, 37(3), 2108-2116.
  • Cheng, J. H., Lee, C. M., & Tang, C. H. (2009). An application of fuzzy Delphi and fuzzy AHP on evaluating wafer supplier in semiconductor industry.WSEAS Transactions on Information Science and Applications, 6(5), 756-767.
  • Cheng, S., Chan, C. W., and Huang, G. H. (2002), Using Multiple Criteria Decision Analysis for Supporting Decisions of Solid Waste Management, Journal of Environment Science Health, 37(6), 975- 990.
  • Chin-N. L., (2010). Supplier selection project using an integrated Delphi, AHP and Taguchi loss function, Prob Stat Forum (03), 118-134.
  • Choy, K. L., Lee, W., & Lo, V. (2003). Design of a case based intelligent supplier relationship management system—the integration of supplier rating system and product coding system. Expert Systems with Applications, 25(1), 87-100.
  • Chu, T. C., & Lin, Y. C. (2003). A fuzzy TOPSIS method for robot selection.The International Journal of Advanced Manufacturing Technology, 21(4), 284-290. Dağdeviren M., Eraslan E., Kurt M. ve Dizdar, E.N. (2005), “Tedarikçi Seçimi Problemine Analitik Ağ Süreci İle Alternatif Bir Yaklaşım”, Teknoloji Dergisi, 8(2): 115-122.
  • Dağdeviren, M. and Eraslan, E. (2008), Promethee Sıralama Yöntemiyle Tedarikçi Seçimi, Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 23(1), 69-75.
  • Dickson, G., (1966), An Analysis of Vendor Selection Systems and Decisions., Journal of Purchasing, (2), 28-41.
  • Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283.
  • Forker,L.B., and Mendez, D. An analytical method for benchmarking best peer suppliers. International Journal of Operations and Production Management, 2001, 21(1/2), 195-209.
  • Ghobadian, A., Stainer, A., Liu, J. and Kiss, T. (2016). A computerised vendor rating system. Developments in Logistics and Supply Chain Management. Palgrave Macmillan UK, 2016. 103-112.
  • Ghodsypour, S.H., O’Brien, C. (1996). A Decision Support System for Supplier Selection Using An Integrated Analytic Hierarchy Process And Linear Programming, International Journal of Production Economics, Vol. 56- 57, 199-212.
  • Golmohammadi, D., Robert C. C. and Haleh V. (2009). Neural network application for supplier selection. International Journal of Product Development, 8(3), 252-275.
  • Görener, A. (2009). Kesici Takım Tedarikçisi Seçiminde Analitik Ağ Sürecinin Kullanımı. Journal of Aeronautics & Space Technologies/Havacilik ve Uzay Teknolojileri Dergisi 4(1), 99-110.
  • Hinkle, C.L., Robinson, P. J., and Green, P. E. (1969). Vendor Evaluation Using Cluster Analysis, Journal of Purchasing, 5(3), 49-58.
  • Hwang, H. S., Moon, C., Chuang, C. L., & Goan, M. J. (2005). Supplier selection and planning model using AHP. international Journal of the Information Systems for Logistics and Management (IJISLM), 1(1), 47-53.
  • JE, T. (2011). Evolving trends of supplier selection criteria and methods. International Journal of Automotive and Mechanical Engineering (IJAME) 4, 437-454.
  • Kannan, D., Sousa J., A. B. L., & Jabbour, C. J. C. (2014). Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company. European Journal of Operational Research,233(2), 432-447.
  • Karadoğan, A., Başçetin, A., Kahriman, A. and Görgün, S. (2001). Bulanık Küme Teorisinin Yeraltı Üretim Yöntemi Seçiminde Kullanılabilirliği.Türkiye 17. Uluslararası Madencilik Kongresi ve Sergisi-TUMAKS
  • Kassaee, M., Farrokh, M., & Nia, H. H. (2013). An Integrated Hybrid MCDM Approach for Vendor Selection Problem (Case Study: Iran Khodro). Business and Management Horizons, 1(1), 153.
  • Knight, K. G. (2001). A Fuzzy Logic Model for Predicting Commercial Building Design Cost Overruns, Master of Science Thesis, University of Alberta.
  • Kumar, J., and Roy, N. (2010). A hybrid method for vendor selection using neural network. International Journal of Computer Applications, 11(12), 35-40.
  • Lee, A. H. (2009). A fuzzy AHP evaluation model for buyer–supplier relationships with the consideration of benefits, opportunities, costs and risks.International Journal of Production Research, 47(15), 4255-4280.
  • Lehmann, D.R. and O'Shaughnessy, J. (1974). Difference in Attribute Importance for Different Industrial Products, Journal of Marketing, (38), 36-42.
  • Lin, H. T., & Chang, W. L. (2008). Order selection and pricing methods using flexible quantity and fuzzy approach for buyer evaluation. European Journal of Operational Research, 187(2), 415–428.
  • Lin, R. H. (2012). An integrated model for supplier selection under a fuzzy situation. International Journal of Production Economics, 138(1), 55-61.
  • Mandal, A., & Deshmukh, S. G. (1994). Vendor selection using interpretive structural modelling (ISM). International Journal of Operations & Production Management, 14(6), 52-59.
  • Mao, H. (1999), Estimating Labour Productivity Using Fuzzy Set Theory, Master of Science Thesis, University of Alberta.
  • Min, H. (1994). International supplier selection: a multi-attribute utility approach.International Journal of Physical Distribution & Logistics Management, 24(5), 24-33.
  • Min, H., & Galle, W. P. (1999). Electronic commerce usage in business to business purchasing. International Journal of Operations and Production Management, 19(9), 909–921.
  • Ng, W. L. (2008). An efficient and simple model for multiple criteria supplier selection problem. European Journal of Operational Research, 186(3), 1059-1067.
  • Ni, M., Xu, X., & Deng, S. (2007). Extended QFD and data-mining-based methods for supplier selection in mass customization. International Journal of Computer Integrated Manufacturing, 20(2-3), 280-291.
  • Ozcalici, M., Bumin, M. and Ayricay, Y. (2016). "Forecasting the Rankings of Banks by Return on Assets in Turkish Banking Sector with Topsis, Fuzzy Topsis and Grey Relational Analysis Techniques." Global Journal For Research Analysis.
  • Parthiban, P.; Zubar, H.A.; Garge, C.P. (2012). A Multi Criteria Decision Making Approach for Suppliers Selection Procedia Engineering, Volume 38, 2312-2328.
  • Peng J., (2012). Selection of Logistics Outsourcing Service Suppliers Based on AHP, 2012 International Conference on Future Electrical Power and Energy Systems, Energy Procedia, 17, 595 – 601.
  • Phelps, L. (1996). Discriminative validity of the WRAML with ADHD and LD children. Psychology in the Schools, 33, 5-12.
  • Rajesh, R. and, Ravi, V. (2015). Supplier selection in resilient supply chains: A Grey Relational Analysis Approach. Journal of Cleaner Production 86: 343-359.
  • Rajesh, R., & Ravi, V. (2015). Modeling enablers of supply chain risk mitigation in electronic supply chains: A Grey–Detamel approach. Computers & Industrial Engineering, 87, 126-139.
  • Safari, H., Fagheyi, M., Ahangari, S., Fathi, M.R. (2012). Applying Promethee Method Based on Entropy Weight for Supplier Selection. Business management and strategy, Vol. 3, No. 1, 97-106.
  • Sahai, M., Agarwal, P., Mishra, V., Bag, M., & Singh, V. (2014). Supplier Selection through Application of DEA. IJEM-International Journal of Engineering and Manufacturing (IJEM), 4(1), 1.
  • Sanchez, J. A. and Gomez, A. T. (2003), Applications of Fuzzy Regression in Actuarial Analysis, The Journal of Risk and Insurance, 70(4), 665-699.
  • Saremi, M. S., Mousavi, F. and Sanayei, A. (2009). TQM consultant selection in SMEs with TOPSIS under fuzzy environment. Expert Systems with Applications 36.2, 2742-2749.
  • Shahroudi, K., & Rouydel, H. (2012). Using a multi-criteria decision making approach (ANP-TOPSIS) to evaluate suppliers in Iran’s auto industry.International Journal of Applied Operational Research-An Open Access Journal, 2(2).
  • Stavropolous, N. (2000). Suppliers in the new economy. Telecommunications Journal of Australia, 50(4), 27–29.
  • Sun, C. C., & Lin, G. T. (2009). Using Fuzzy TOPSIS method for evaluating the competitive advantages of shopping websites. Expert Systems with Applications, 36(9), 11764-11771.
  • Talluri, S., & Narasimhan, R. (2003). Vendor evaluation with performance variability: A max–min approach. European Journal of Operational Research,146(3), 543-552.
  • Tam, M. C., & Tummala, V. R. (2001). An application of the AHP in vendor selection of a telecommunications system. Omega, 29(2), 171-182.
  • Tsai, Y. L., Yao J. Y., and Lin, C. H. (2010). A Dynamic Decision Approach For Supplier Selection Using Ant Colony System. Expert systems with applications 37(12) , 8313-8321.
  • Vahdani, B., Hadipour, H., Sadaghiani, J.S. ve Amiri, M. (2010). Extension of VIKOR method based on interval-valued fuzzy sets, International Journal of Advanced Manufacturing Technology, 47(9-12), 1231- 1239.
  • Wang, J.-W., Cheng, C.-H. and Cheng, H. K. (2008). Fuzzy hierarchical TOPSIS for supplier selection, Applied Soft Computing, doi:10.1016/j.asoc.
  • Wang, Y. J. (2014). The evaluation of financial performance for Taiwan container shipping companies by fuzzy TOPSIS. Applied Soft Computing, 22, 8-35.
  • Weber, C. A., & Ellram, L. M. (1993). Supplier selection using multi-objective programming: a decision support system approach. International Journal of Physical Distribution & Logistics Management, 23(2), 3-14.
  • Weber, C.A., Current, J.R., Benton, W.C. (1991). Vendor selection criteria and methods. European Journal of Operational Research 50(1), 2,18.
  • Wind, Y., Green, P., Robinson, P. (1968). The Determinants of Vendor Selection: The evaluation Function Approach. Journal of Purchasing, 4(3), 29-41.
  • Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on systems, Man, and Cybernetics 1, 28-44.
  • Zadeh, L.A. (1965). Fuzzy Sets, Information and Control, Sayı: 8, 338-353.
  • Zarbini, S. A., Karbasi, A., & Atef-Y. E. (2011). Evaluating and selecting supplier in textile industry using hierarchical fuzzy TOPSIS. Indian Journal of Science and Technology, 4(10), 1322-1334.
  • Zhao, K., & Yu, X. (2011). A case based reasoning approach on supplier selection in petroleum enterprises. Expert Systems with Applications, 38(6), 6839-6847. Zimmermann, H.J., (1991). Fuzzy Set Theory and its Applications, third ed. Kluwer Academic Publishers, Boston, Dordrecht, London.
There are 65 citations in total.

Details

Subjects Economics
Journal Section Research Papers
Authors

Nazlı Ersoy

Publication Date May 8, 2017
Submission Date April 11, 2017
Published in Issue Year 2017 Volume: 2 Issue: 3

Cite

APA Ersoy, N. (2017). BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ. İktisadi İdari Ve Siyasal Araştırmalar Dergisi, 2(3), 11-29. https://doi.org/10.25204/iktisad.305628
AMA Ersoy N. BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ. JEBUPOR. May 2017;2(3):11-29. doi:10.25204/iktisad.305628
Chicago Ersoy, Nazlı. “BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ”. İktisadi İdari Ve Siyasal Araştırmalar Dergisi 2, no. 3 (May 2017): 11-29. https://doi.org/10.25204/iktisad.305628.
EndNote Ersoy N (May 1, 2017) BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ. İktisadi İdari ve Siyasal Araştırmalar Dergisi 2 3 11–29.
IEEE N. Ersoy, “BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ”, JEBUPOR, vol. 2, no. 3, pp. 11–29, 2017, doi: 10.25204/iktisad.305628.
ISNAD Ersoy, Nazlı. “BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ”. İktisadi İdari ve Siyasal Araştırmalar Dergisi 2/3 (May 2017), 11-29. https://doi.org/10.25204/iktisad.305628.
JAMA Ersoy N. BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ. JEBUPOR. 2017;2:11–29.
MLA Ersoy, Nazlı. “BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ”. İktisadi İdari Ve Siyasal Araştırmalar Dergisi, vol. 2, no. 3, 2017, pp. 11-29, doi:10.25204/iktisad.305628.
Vancouver Ersoy N. BULANIK MANTIK YARDIMIYLA TEDARİKÇİ SEÇİMİ: GAZİANTEP ÖRNEĞİ. JEBUPOR. 2017;2(3):11-29.