Review
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 1, 25 - 31, 15.07.2020

Abstract

References

  • Bhurosy T, Jeewon R. Overweight and obesity epidemic in developing countries: a problem with diet, physical activity, or socioeconomic status? TheScientificWorldJournal (2014) 2014:964236. doi:10.1155/2014/964236.
  • Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Experimental Diabetes Research (2012) 2012:824305. doi:10.1155/2012/824305.
  • Lenard NR, Berthoud H-R. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring, Md.) (2008) 16 Suppl 3:S11-22. doi:10.1038/oby.2008.511.
  • Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PloS one (2008) 3(3):e1797. doi:10.1371/journal.pone.0001797.
  • Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, et al. Knockout of the α 2 but Not α 1 5′-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle. Journal of Biological Chemistry (2004) 279(2):1070–1079. doi:10.1074/jbc.M306205200.
  • Ross FA, Jensen TE, Hardie DG. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. The Biochemical journal (2016) 473(2):189–199. doi:10.1042/BJ20150910.
  • Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays news and reviews in molecular, cellular and developmental biology (2001) 23(12):1112–1119. doi:10.1002/bies.10009.
  • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews. Molecular cell biology (2012) 13(4):251–262. doi:10.1038/nrm3311.
  • Hardie DG. AMPK--sensing energy while talking to other signaling pathways. Cell metabolism (2014) 20(6):939–952. doi:10.1016/j.cmet.2014.09.013.
  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell metabolism (2005) 2(1):9–19. doi:10.1016/j.cmet.2005.05.009.
  • Moore F, Weekes J, Hardie DG. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. European journal of biochemistry (1991) 199(3):691–697. doi:10.1111/j.1432-1033.1991.tb16172.x.
  • Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell metabolism (2013) 18(4):556–566. doi:10.1016/j.cmet.2013.08.019.
  • Cordero MD, Viollet B, editors. AMP-Activated Protein Kinase. Berlin/Heidelberg: Springer-Verlag (2011).
  • Cheung PCF, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochemical Journal (2000) 346(3):659. doi:10.1042/0264-6021:3460659.
  • Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase--development of the energy sensor concept. The Journal of physiology (2006) 574(Pt 1):7–15. doi:10.1113/jphysiol.2006.108944.
  • Kişmiroğlu C, Cengiz S, Yaman M. AMPK'nin Biyokimyası: Etki Mekanizmaları ve Diyabetin Tedavisindeki Önemi. European Journal of Science and Technology (2020):162–170. doi:10.31590/ejosat.676335.
  • O'neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes & Metabolism Journal (2013) 37(1):1–21.
  • Świderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Śliwińska A. Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake. In: Szablewski L, editor. Blood Glucose Levels: IntechOpen (2020).
  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current biology CB (2000) 10(20):1247–1255. doi:10.1016/s0960-9822(00)00742-9.
  • Halse R, Fryer LGD, McCormack JG, Carling D, Yeaman SJ. Regulation of glycogen synthase by glucose and glycogen: A possible role for AMP-activated protein kinase. Diabetes (2003) 52(1):9–15. doi:10.2337/diabetes.52.1.9.
  • Hunter RW, Treebak JT, Wojtaszewski JFP, Sakamoto K. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes (2011) 60(3):766–774. doi:10.2337/db10-1148.
  • Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et biophysica acta (2005) 1736(3):163–180. doi:10.1016/j.bbalip.2005.08.018.
  • Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie (2004) 86(11):839–848. doi:10.1016/j.biochi.2004.09.018.
  • Madsen A, Bozickovic O, Bjune J-I, Mellgren G, Sagen JV. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Scientific reports (2015) 5:16430. doi:10.1038/srep16430.
  • Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. American Journal of Physiology-Endocrinology And Metabolism (2009) 296(6):E1195-E1209.
  • Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes (2009) 58(3):550–558. doi:10.2337/db08-1078.
  • Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. The Journal of biological chemistry (1995) 270(29):17513–17520. doi:10.1074/jbc.270.29.17513.
  • Ronnebaum SM, Patterson C. The FoxO family in cardiac function and dysfunction. Annual review of physiology (2010) 72:81–94. doi:10.1146/annurev-physiol-021909-135931.
  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell (2008) 30(2):214–226. doi:10.1016/j.molcel.2008.03.003.
  • Thupari JN, Landree LE, Ronnett GV, Kuhajda FP. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America (2002) 99(14):9498–9502. doi:10.1073/pnas.132128899.
  • Kim CJ, Cho YG, Park JY, Kim TY, Lee JH, Kim HS, et al. Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. European journal of cancer (Oxford, England 1990) (2004) 40(1):136–141. doi:10.1016/s0959-8049(03)00659-2.
  • Pocai A, Lam TKT, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. The Journal of clinical investigation (2006) 116(4):1081–1091. doi:10.1172/JCI26640.
  • Yamauchi M, Kambe F, Cao X, Lu X, Kozaki Y, Oiso Y, et al. Thyroid Hormone Activates Adenosine 5'-monophosphate-activated Protein Kinase via Intracellular Calcium Mobilization and Activation of calcium/calmodulin-dependent Protein Kinase Kinase-Beta. Molecular Endocrinology (2008) 22:893–903.
  • Schwartz MW. Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity. The Journal of clinical investigation (2001) 108(7):963–964. doi:10.1172/JCI14127.
  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature (2006) 443(7109):289–295. doi:10.1038/nature05026.
  • Ropelle ER, Pauli JR, Zecchin KG, Ueno M, Souza CT de, Morari J, et al. A central role for neuronal adenosine 5'-monophosphate-activated protein kinase in cancer-induced anorexia. Endocrinology (2007) 148(11):5220–5229. doi:10.1210/en.2007-0381.
  • Minokoshi Y, Alquier T, Furukawa N, Kim Y-B, Lee A, Xue B, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature (2004) 428(6982):569–574. doi:10.1038/nature02440.
  • Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in molecular medicine (2008) 14(12):539–549. doi:10.1016/j.molmed.2008.09.007.
  • Cohen Jr MM. Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. American Journal of Medical Genetics Part A (2006) 140(5):515–524.
  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature (1998) 395(6704):763–770. doi:10.1038/27376.
  • Muoio DM, Dohm GL, Fiedorek FT, Tapscott EB, Coleman RA, Dohn GL. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes (1997) 46(8):1360–1363. doi:10.2337/diab.46.8.1360.
  • Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature (1997) 389(6649):374–377.
  • Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. In: Proceedings of the National Academy of Sciences (1996). p. 2327–2332.
  • Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Müller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature (2002) 415(6869):339–343. doi:10.1038/415339a.
  • Hussain Z, Khan JA. Food intake regulation by leptin: Mechanisms mediating gluconeogenesis and energy expenditure. Asian Pacific journal of tropical medicine (2017) 10(10):940–944. doi:10.1016/j.apjtm.2017.09.003.
  • Mountjoy PD, Bailey SJ, Rutter GA. Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity. Diabetologia (2006) 50(1):168–177. doi:10.1007/s00125-006-0473-3.
  • Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, et al. AMP-activated protein kinase plays a role in the control of food intake. The Journal of biological chemistry (2004) 279(13):12005–12008. doi:10.1074/jbc.C300557200.
  • Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. Journal of Biological Chemistry (2005) 280(26):25196–25201.
  • Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises Ca2+i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochemical and biophysical research communications (2008) 366(2):388–392. doi:10.1016/j.bbrc.2007.11.166.
  • Woods A, Dickerson K, Heath R, Hong S-P, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism (2005) 2(1):21–33. doi:10.1016/j.cmet.2005.06.005.
  • Williams CM, Kirkham TC. Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (1999) 143(3):315–317. doi:10.1007/s002130050953.
  • Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G, et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB journal official publication of the Federation of American Societies for Experimental Biology (2008) 22(6):1672–1683. doi:10.1096/fj.07-094144.
  • Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell metabolism (2007) 6(1):55–68. doi:10.1016/j.cmet.2007.06.003.
  • Cavaliere G, Viggiano E, Trinchese G, Filippo C de, Messina A, Monda V, et al. Long Feeding High-Fat Diet Induces Hypothalamic Oxidative Stress and Inflammation, and Prolonged Hypothalamic AMPK Activation in Rat Animal Model. Frontiers in physiology (2018) 9:818. doi:10.3389/fphys.2018.00818.
  • Cavadas C, Aveleira CA, Souza GFP, Velloso LA. The pathophysiology of defective proteostasis in the hypothalamus - from obesity to ageing. Nature reviews. Endocrinology (2016) 12(12):723–733. doi:10.1038/nrendo.2016.107.
  • Pimentel GD, Lira FS, Rosa JC, Oliveira JL, Losinskas-Hachul AC, Souza GIH, et al. Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFκBp65 signaling in adult offspring. The Journal of nutritional biochemistry (2012) 23(3):265–271. doi:10.1016/j.jnutbio.2010.12.003.
  • Scheen AJ, Charpentier G, Ostgren CJ, Hellqvist A, Gause-Nilsson I. Efficacy and safety of saxagliptin in combination with metformin compared with sitagliptin in combination with metformin in adult patients with type 2 diabetes mellitus. Diabetes/metabolism research and reviews (2010) 26(7):540–549. doi:10.1002/dmrr.1114.
  • Gizlici MN. Diabetes Mellitus ve Çinko İlişkisi. Turkish Journal of Diabetes and Obesity (2019) 3(2):107–113. doi:10.25048/tjdo.2019.48.
  • Ewart M-A, Kennedy S. AMPK and vasculoprotection. Pharmacology & Therapeutics (2011) 131(2):242–253. doi:10.1016/j.pharmthera.2010.11.002.
  • Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. The Journal of biological chemistry (2004) 279(46):47898–47905. doi:10.1074/jbc.M408149200.
  • Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, N.Y.) (2005) 310(5754):1642–1646. doi:10.1126/science.1120781.
  • Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA (2005) 293(1):43–53. doi:10.1001/jama.293.1.43.
  • Ropelle ER, Pauli JR, Fernandes MFA, Rocco SA, Marin RM, Morari J, et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes (2008) 57(3):594–605. doi:10.2337/db07-0573.
  • Catania C, Binder E, Cota D. mTORC1 signaling in energy balance and metabolic disease. International journal of obesity (2005) (2011) 35(6):751–761. doi:10.1038/ijo.2010.208.
  • Cota D, Matter EK, Woods SC, Seeley RJ. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. The Journal of neuroscience the official journal of the Society for Neuroscience (2008) 28(28):7202–7208. doi:10.1523/JNEUROSCI.1389-08.2008.
  • Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML. Metabolic Regulation by Leucine of Translation Initiation Through the mTOR-Signaling Pathway by Pancreatic -Cells. Diabetes (2001) 50(2):353–360. doi:10.2337/diabetes.50.2.353.
  • Cao Z-P, Wang F, Xiang X-S, Cao R, Zhang W-B, Gao S-B. Intracerebroventricular administration of conjugated linoleic acid (CLA) inhibits food intake by decreasing gene expression of NPY and AgRP. Neuroscience letters (2007) 418(3):217–221. doi:10.1016/j.neulet.2007.03.010.
  • Liu J. The Effects and Mechanisms of Mitochondrial Nutrient α-Lipoic Acid on Improving Age-Associated Mitochondrial and Cognitive Dysfunction: An Overview. Neurochemical Research (2008) 33(1):194–203. doi:10.1007/s11064-007-9403-0.
  • Kim WS, Lee YS, Cha SH, Jeong HW, Choe SS, Lee M-R, et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. American journal of physiology. Endocrinology and metabolism (2009) 296(4):E812-9. doi:10.1152/ajpendo.90710.2008.

The Role of AMPK in the Regulation of Appetite and Energy Homeostasis: Role of AMPK in Appetite

Year 2020, Volume: 4 Issue: 1, 25 - 31, 15.07.2020

Abstract

Today, excessive nutrition and sedentary life have brought along many chron-ic diseases such as obesity and diabetes. As is known, obesity is a disorder of both energy metabolism and appetite regulation. In re-cent studies, it has been reported that AMPK regu-lates the metabolic energy balance as well as governs appetite control. When AMPK is activated, anabol-ic reactions are inhibited, while catabolic reactions are activated to produce energy. In addition to many pharmacological drugs and nutritional supplements, exercise activates AMPK and enhances the translo-cation of the glucose trans-porter (GLUT4) protein, which provides insulin-independent cellular glu-cose uptake. AMPK is an essential intracellular sensor against obesity because when AMP and LKB1 acti-vate AMPK, the use of body fat stores will be en-couraged to produce energy. Appetite-stimulating and suppressing agents act on AMPK to regulate both food intake and body weight control. When appe-tite suppressors such as leptin, insulin, metformin, inhibit AMPK leucine, and berberine, the expression of orexigenic neuropeptides are decreased while the expression of anorexigenic neuropeptides is increased. Understanding the mecha-nisms controlled by the hypothalamic AMPK is crucial for developing ef-fective nutritional strategies for the treatment of nutri-tional intake disorders such as obesity, diabetes mellitus, cardiovascular disease, hypertension and cancer.

References

  • Bhurosy T, Jeewon R. Overweight and obesity epidemic in developing countries: a problem with diet, physical activity, or socioeconomic status? TheScientificWorldJournal (2014) 2014:964236. doi:10.1155/2014/964236.
  • Suzuki K, Jayasena CN, Bloom SR. Obesity and appetite control. Experimental Diabetes Research (2012) 2012:824305. doi:10.1155/2012/824305.
  • Lenard NR, Berthoud H-R. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring, Md.) (2008) 16 Suppl 3:S11-22. doi:10.1038/oby.2008.511.
  • Kola B, Farkas I, Christ-Crain M, Wittmann G, Lolli F, Amin F, et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PloS one (2008) 3(3):e1797. doi:10.1371/journal.pone.0001797.
  • Jørgensen SB, Viollet B, Andreelli F, Frøsig C, Birk JB, Schjerling P, et al. Knockout of the α 2 but Not α 1 5′-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-β-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle. Journal of Biological Chemistry (2004) 279(2):1070–1079. doi:10.1074/jbc.M306205200.
  • Ross FA, Jensen TE, Hardie DG. Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. The Biochemical journal (2016) 473(2):189–199. doi:10.1042/BJ20150910.
  • Hardie DG, Hawley SA. AMP-activated protein kinase: the energy charge hypothesis revisited. BioEssays news and reviews in molecular, cellular and developmental biology (2001) 23(12):1112–1119. doi:10.1002/bies.10009.
  • Hardie DG, Ross FA, Hawley SA. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature reviews. Molecular cell biology (2012) 13(4):251–262. doi:10.1038/nrm3311.
  • Hardie DG. AMPK--sensing energy while talking to other signaling pathways. Cell metabolism (2014) 20(6):939–952. doi:10.1016/j.cmet.2014.09.013.
  • Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell metabolism (2005) 2(1):9–19. doi:10.1016/j.cmet.2005.05.009.
  • Moore F, Weekes J, Hardie DG. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. European journal of biochemistry (1991) 199(3):691–697. doi:10.1111/j.1432-1033.1991.tb16172.x.
  • Gowans GJ, Hawley SA, Ross FA, Hardie DG. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell metabolism (2013) 18(4):556–566. doi:10.1016/j.cmet.2013.08.019.
  • Cordero MD, Viollet B, editors. AMP-Activated Protein Kinase. Berlin/Heidelberg: Springer-Verlag (2011).
  • Cheung PCF, Salt IP, Davies SP, Hardie DG, Carling D. Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochemical Journal (2000) 346(3):659. doi:10.1042/0264-6021:3460659.
  • Hardie DG, Hawley SA, Scott JW. AMP-activated protein kinase--development of the energy sensor concept. The Journal of physiology (2006) 574(Pt 1):7–15. doi:10.1113/jphysiol.2006.108944.
  • Kişmiroğlu C, Cengiz S, Yaman M. AMPK'nin Biyokimyası: Etki Mekanizmaları ve Diyabetin Tedavisindeki Önemi. European Journal of Science and Technology (2020):162–170. doi:10.31590/ejosat.676335.
  • O'neill HM. AMPK and exercise: glucose uptake and insulin sensitivity. Diabetes & Metabolism Journal (2013) 37(1):1–21.
  • Świderska E, Strycharz J, Wróblewski A, Szemraj J, Drzewoski J, Śliwińska A. Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake. In: Szablewski L, editor. Blood Glucose Levels: IntechOpen (2020).
  • Marsin AS, Bertrand L, Rider MH, Deprez J, Beauloye C, Vincent MF, et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Current biology CB (2000) 10(20):1247–1255. doi:10.1016/s0960-9822(00)00742-9.
  • Halse R, Fryer LGD, McCormack JG, Carling D, Yeaman SJ. Regulation of glycogen synthase by glucose and glycogen: A possible role for AMP-activated protein kinase. Diabetes (2003) 52(1):9–15. doi:10.2337/diabetes.52.1.9.
  • Hunter RW, Treebak JT, Wojtaszewski JFP, Sakamoto K. Molecular mechanism by which AMP-activated protein kinase activation promotes glycogen accumulation in muscle. Diabetes (2011) 60(3):766–774. doi:10.2337/db10-1148.
  • Koonen DPY, Glatz JFC, Bonen A, Luiken JJFP. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochimica et biophysica acta (2005) 1736(3):163–180. doi:10.1016/j.bbalip.2005.08.018.
  • Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie (2004) 86(11):839–848. doi:10.1016/j.biochi.2004.09.018.
  • Madsen A, Bozickovic O, Bjune J-I, Mellgren G, Sagen JV. Metformin inhibits hepatocellular glucose, lipid and cholesterol biosynthetic pathways by transcriptionally suppressing steroid receptor coactivator 2 (SRC-2). Scientific reports (2015) 5:16430. doi:10.1038/srep16430.
  • Takeuchi K, Reue K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. American Journal of Physiology-Endocrinology And Metabolism (2009) 296(6):E1195-E1209.
  • Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes (2009) 58(3):550–558. doi:10.2337/db08-1078.
  • Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. The Journal of biological chemistry (1995) 270(29):17513–17520. doi:10.1074/jbc.270.29.17513.
  • Ronnebaum SM, Patterson C. The FoxO family in cardiac function and dysfunction. Annual review of physiology (2010) 72:81–94. doi:10.1146/annurev-physiol-021909-135931.
  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular cell (2008) 30(2):214–226. doi:10.1016/j.molcel.2008.03.003.
  • Thupari JN, Landree LE, Ronnett GV, Kuhajda FP. C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America (2002) 99(14):9498–9502. doi:10.1073/pnas.132128899.
  • Kim CJ, Cho YG, Park JY, Kim TY, Lee JH, Kim HS, et al. Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas. European journal of cancer (Oxford, England 1990) (2004) 40(1):136–141. doi:10.1016/s0959-8049(03)00659-2.
  • Pocai A, Lam TKT, Obici S, Gutierrez-Juarez R, Muse ED, Arduini A, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. The Journal of clinical investigation (2006) 116(4):1081–1091. doi:10.1172/JCI26640.
  • Yamauchi M, Kambe F, Cao X, Lu X, Kozaki Y, Oiso Y, et al. Thyroid Hormone Activates Adenosine 5'-monophosphate-activated Protein Kinase via Intracellular Calcium Mobilization and Activation of calcium/calmodulin-dependent Protein Kinase Kinase-Beta. Molecular Endocrinology (2008) 22:893–903.
  • Schwartz MW. Progress in the search for neuronal mechanisms coupling type 2 diabetes to obesity. The Journal of clinical investigation (2001) 108(7):963–964. doi:10.1172/JCI14127.
  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW. Central nervous system control of food intake and body weight. Nature (2006) 443(7109):289–295. doi:10.1038/nature05026.
  • Ropelle ER, Pauli JR, Zecchin KG, Ueno M, Souza CT de, Morari J, et al. A central role for neuronal adenosine 5'-monophosphate-activated protein kinase in cancer-induced anorexia. Endocrinology (2007) 148(11):5220–5229. doi:10.1210/en.2007-0381.
  • Minokoshi Y, Alquier T, Furukawa N, Kim Y-B, Lee A, Xue B, et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature (2004) 428(6982):569–574. doi:10.1038/nature02440.
  • Lage R, Diéguez C, Vidal-Puig A, López M. AMPK: a metabolic gauge regulating whole-body energy homeostasis. Trends in molecular medicine (2008) 14(12):539–549. doi:10.1016/j.molmed.2008.09.007.
  • Cohen Jr MM. Role of leptin in regulating appetite, neuroendocrine function, and bone remodeling. American Journal of Medical Genetics Part A (2006) 140(5):515–524.
  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature (1998) 395(6704):763–770. doi:10.1038/27376.
  • Muoio DM, Dohm GL, Fiedorek FT, Tapscott EB, Coleman RA, Dohn GL. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes (1997) 46(8):1360–1363. doi:10.2337/diab.46.8.1360.
  • Kamohara S, Burcelin R, Halaas JL, Friedman JM, Charron MJ. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature (1997) 389(6649):374–377.
  • Unger RH, Zhou YT, Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. In: Proceedings of the National Academy of Sciences (1996). p. 2327–2332.
  • Minokoshi Y, Kim Y-B, Peroni OD, Fryer LGD, Müller C, Carling D, et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature (2002) 415(6869):339–343. doi:10.1038/415339a.
  • Hussain Z, Khan JA. Food intake regulation by leptin: Mechanisms mediating gluconeogenesis and energy expenditure. Asian Pacific journal of tropical medicine (2017) 10(10):940–944. doi:10.1016/j.apjtm.2017.09.003.
  • Mountjoy PD, Bailey SJ, Rutter GA. Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity. Diabetologia (2006) 50(1):168–177. doi:10.1007/s00125-006-0473-3.
  • Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, et al. AMP-activated protein kinase plays a role in the control of food intake. The Journal of biological chemistry (2004) 279(13):12005–12008. doi:10.1074/jbc.C300557200.
  • Kola B, Hubina E, Tucci SA, Kirkham TC, Garcia EA, Mitchell SE, et al. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. Journal of Biological Chemistry (2005) 280(26):25196–25201.
  • Kohno D, Sone H, Minokoshi Y, Yada T. Ghrelin raises Ca2+i via AMPK in hypothalamic arcuate nucleus NPY neurons. Biochemical and biophysical research communications (2008) 366(2):388–392. doi:10.1016/j.bbrc.2007.11.166.
  • Woods A, Dickerson K, Heath R, Hong S-P, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell metabolism (2005) 2(1):21–33. doi:10.1016/j.cmet.2005.06.005.
  • Williams CM, Kirkham TC. Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (1999) 143(3):315–317. doi:10.1007/s002130050953.
  • Christ-Crain M, Kola B, Lolli F, Fekete C, Seboek D, Wittmann G, et al. AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome. FASEB journal official publication of the Federation of American Societies for Experimental Biology (2008) 22(6):1672–1683. doi:10.1096/fj.07-094144.
  • Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, et al. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell metabolism (2007) 6(1):55–68. doi:10.1016/j.cmet.2007.06.003.
  • Cavaliere G, Viggiano E, Trinchese G, Filippo C de, Messina A, Monda V, et al. Long Feeding High-Fat Diet Induces Hypothalamic Oxidative Stress and Inflammation, and Prolonged Hypothalamic AMPK Activation in Rat Animal Model. Frontiers in physiology (2018) 9:818. doi:10.3389/fphys.2018.00818.
  • Cavadas C, Aveleira CA, Souza GFP, Velloso LA. The pathophysiology of defective proteostasis in the hypothalamus - from obesity to ageing. Nature reviews. Endocrinology (2016) 12(12):723–733. doi:10.1038/nrendo.2016.107.
  • Pimentel GD, Lira FS, Rosa JC, Oliveira JL, Losinskas-Hachul AC, Souza GIH, et al. Intake of trans fatty acids during gestation and lactation leads to hypothalamic inflammation via TLR4/NFκBp65 signaling in adult offspring. The Journal of nutritional biochemistry (2012) 23(3):265–271. doi:10.1016/j.jnutbio.2010.12.003.
  • Scheen AJ, Charpentier G, Ostgren CJ, Hellqvist A, Gause-Nilsson I. Efficacy and safety of saxagliptin in combination with metformin compared with sitagliptin in combination with metformin in adult patients with type 2 diabetes mellitus. Diabetes/metabolism research and reviews (2010) 26(7):540–549. doi:10.1002/dmrr.1114.
  • Gizlici MN. Diabetes Mellitus ve Çinko İlişkisi. Turkish Journal of Diabetes and Obesity (2019) 3(2):107–113. doi:10.25048/tjdo.2019.48.
  • Ewart M-A, Kennedy S. AMPK and vasculoprotection. Pharmacology & Therapeutics (2011) 131(2):242–253. doi:10.1016/j.pharmthera.2010.11.002.
  • Zang M, Zuccollo A, Hou X, Nagata D, Walsh K, Herscovitz H, et al. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. The Journal of biological chemistry (2004) 279(46):47898–47905. doi:10.1074/jbc.M408149200.
  • Shaw RJ, Lamia KA, Vasquez D, Koo S-H, Bardeesy N, Depinho RA, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science (New York, N.Y.) (2005) 310(5754):1642–1646. doi:10.1126/science.1120781.
  • Dansinger ML, Gleason JA, Griffith JL, Selker HP, Schaefer EJ. Comparison of the Atkins, Ornish, Weight Watchers, and Zone diets for weight loss and heart disease risk reduction: a randomized trial. JAMA (2005) 293(1):43–53. doi:10.1001/jama.293.1.43.
  • Ropelle ER, Pauli JR, Fernandes MFA, Rocco SA, Marin RM, Morari J, et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss. Diabetes (2008) 57(3):594–605. doi:10.2337/db07-0573.
  • Catania C, Binder E, Cota D. mTORC1 signaling in energy balance and metabolic disease. International journal of obesity (2005) (2011) 35(6):751–761. doi:10.1038/ijo.2010.208.
  • Cota D, Matter EK, Woods SC, Seeley RJ. The role of hypothalamic mammalian target of rapamycin complex 1 signaling in diet-induced obesity. The Journal of neuroscience the official journal of the Society for Neuroscience (2008) 28(28):7202–7208. doi:10.1523/JNEUROSCI.1389-08.2008.
  • Xu G, Kwon G, Cruz WS, Marshall CA, McDaniel ML. Metabolic Regulation by Leucine of Translation Initiation Through the mTOR-Signaling Pathway by Pancreatic -Cells. Diabetes (2001) 50(2):353–360. doi:10.2337/diabetes.50.2.353.
  • Cao Z-P, Wang F, Xiang X-S, Cao R, Zhang W-B, Gao S-B. Intracerebroventricular administration of conjugated linoleic acid (CLA) inhibits food intake by decreasing gene expression of NPY and AgRP. Neuroscience letters (2007) 418(3):217–221. doi:10.1016/j.neulet.2007.03.010.
  • Liu J. The Effects and Mechanisms of Mitochondrial Nutrient α-Lipoic Acid on Improving Age-Associated Mitochondrial and Cognitive Dysfunction: An Overview. Neurochemical Research (2008) 33(1):194–203. doi:10.1007/s11064-007-9403-0.
  • Kim WS, Lee YS, Cha SH, Jeong HW, Choe SS, Lee M-R, et al. Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity. American journal of physiology. Endocrinology and metabolism (2009) 296(4):E812-9. doi:10.1152/ajpendo.90710.2008.
There are 69 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Reviews
Authors

Ismail Belli This is me

Mustafa Yaman

Publication Date July 15, 2020
Submission Date May 30, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Belli, I., & Yaman, M. (2020). The Role of AMPK in the Regulation of Appetite and Energy Homeostasis: Role of AMPK in Appetite. International Journal of Innovative Research and Reviews, 4(1), 25-31.