Research Article
BibTex RIS Cite

The Electrochemical Detection of Alizarin Red at Electrofabricated CeO2-Reduced Graphene Oxide Nanostructures

Year 2025, Volume: 9 Issue: 1, 28 - 31, 15.07.2025

Abstract

Cerium oxide-reduced graphene oxide (CeO2-rGO) nanostructures were successfully fabricated on indium tin oxide (ITO) electrode surface using one-pot electrochemical technique. The prepared nanostructures and modified surfaces (CeO2-rGO/ITO) were investigated for the electrochemical determination of Alizarin red (AR). Firstly, electrocatalytic activities of different modified surfaces were compared by cyclic voltammograms (CVs). For further analysis, concentration-dependent measurements were recorded using differential pulse voltammetry (DPV). The detection limit of AR on the CeO2-rGO/ITO electrode was calculated as 1.9 µM. The modified surface was successfully used to detect AR, which may add a new dimension to the detection of Alizarin derivatives materials.

References

  • [1] Musie W, Gonfa G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review’. Heliyon (2023) 9(8):18685. doi:10.1016/j.heliyon.2023.e18685.
  • [2] Cavin L. 1 - Freshwater Environments and Fishes’, in Freshwater Fishes: 250 Million Years of Evolutionary History: Elsevier (2017). 1–14.
  • [3] Ahmed T, Zounemat-Kermani M, Scholz M. Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan’. Int J Environ Res Public Health (2020) 17(22):8518. doi:10.3390/ijerph17228518.
  • [4] Wang J, Azam W. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries’. Geoscience Frontiers (2024) 15(2):101757. doi:10.1016/j.gsf.2023.101757.
  • [5] Karimi-Maleh H. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection’. Food and Chemical Toxicology (2022) 164:112961. doi:10.1016/j.fct.2022.112961.
  • [6] Singh S, Patidar R, Srivastava VC, Lo S-L, Nidheesh PV. A critical review on the degradation mechanism of textile effluent during electrocatalytic oxidation: Removal optimization and degradation pathways’. Journal of Environmental Chemical Engineering (2023) 11(6):111277. doi:10.1016/j.jece.2023.111277.
  • [7] Venkatesh S, Arutchelvan V. Biosorption of Alizarin Red dye onto immobilized biomass of Canna indica: isotherm, kinetics, and thermodynamic studies’. Desalination and Water Treatment (2020) 196:409–421. doi:10.5004/dwt.2020.25798.
  • [8] Bessegato GG, Brugnera MF, Zanoni M. Electroanalytical sensing of dyes and colorants’. Current Opinion in Electrochemistry (2019) 16:134–142. doi:10.1016/j.coelec.2019.05.008.
  • [9] Ali H. Biodegradation of Synthetic Dyes—A Review’. Water Air Soil Pollut (2010) 213(1):251–273. doi:10.1007/s11270-010-0382-4.
  • [10] Singh S, Srivastava VC, Mall ID. Mechanism of Dye Degradation during Electrochemical Treatment’. J. Phys. Chem. C (2013) 117(29):15229–15240. doi:10.1021/jp405289f.
  • [11] Moreira FC, Boaventura R, Brillas E, Vilar V. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters’. Applied Catalysis B: Environmental (2017) 202:217–261. doi:10.1016/j.apcatb.2016.08.037.
  • [12] Panizza M, Oturan MA. Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode’. Electrochimica Acta (2011) 56(20):7084–7087. doi:10.1016/j.electacta.2011.05.105.
  • [13] Zhang J, Chi Y, Feng L. The mechanism of degradation of alizarin red by a white-rot fungus Trametes gibbosa’. BMC Biotechnol (2021) 21:64. doi:10.1186/s12896-021-00720-8.
  • [14] Nosrati H, Heydari M, Khodaei M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing’. Materials Today Bio (2023) 23:100823. doi:10.1016/j.mtbio.2023.100823.
  • [15] Ahmed HE. Green Synthesis of CeO2 Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities’. Molecules (2021) 26(15, Art. no. 15). doi:10.3390/molecules26154659.
  • [16] Durmuş S, Dalmaz A, Özdinçer M, Sivrikaya S. Preparation of Cerium Oxide Nanoparticles: An Efficient Catalyst to the Synthesis of Dimeric Disulphide Schiff Bases’. CBUJOS (2017) 13(1, Art. no. 1). doi:10.18466/cbayarfbe.282116.
  • [17] Li T, Liu H. A simple synthesis method of nanocrystals CeO2 modified rGO composites as electrode materials for supercapacitors with long time cycling stability’. Powder Technology (2018) 327:275–281. doi:10.1016/j.powtec.2017.12.073.
  • [18] Ahmed J, Faisal M, Algethami JS, Alsaiari M, Jalalah M, Harraz FA. CeO2·ZnO@biomass-derived carbon nanocomposite-based electrochemical sensor for efficient detection of ascorbic acid’. Analytical Biochemistry (2024) 692:115574. doi:10.1016/j.ab.2024.115574.
  • [19] Ahmed J, Faisal M, Algethami JS, Alkorbi AS, Harraz FA. Facile synthesis of CeO2·CuO-decorated biomass-derived carbon nanocomposite for sensitive detection of catechol by electrochemical technique’. Materials Science in Semiconductor Processing (2024) 172:108098. doi:10.1016/j.mssp.2023.108098.
  • [20] Wang W, Xu W, Zhao Z, Cheng M, Xun M, Liu H. Method and Application of Surface Modification of Cerium Dioxide’. Advanced Engineering Materials (2024) 26(14):2400092. doi:10.1002/adem.202400092.
  • [21] Çelebi N, Temur E, Doğan H, Yüksel A. The electrochemical fabrication of Cu@CeO2-rGO electrode for high-performance electrochemical nitrite sensor’. Diamond and Related Materials (2024) 143:110907. doi:10.1016/j.diamond.2024.110907.
  • [22] Schumacher S, Nagel T, Scheller FW, Gajovic-Eichelmann N. Alizarin Red S as an electrochemical indicator for saccharide recognition’. Electrochimica Acta (2011) 56(19):6607–6611. doi:10.1016/j.electacta.2011.04.081.
  • [23] Monnappa A, Manjunatha JG, Bhatt AS, Chenthattil R, Ananda P. Electrochemical Sensor for the Determination of Alizarin Red-S at Non-ionic Surfactant Modified Carbon Nanotube Paste Electrode’. Physical Chemistry Research (2019) 7(3):523–533. doi:10.22036/pcr.2019.185875.1636.
  • [24] Deffo G, Temgoua R, Mbokou S, Njanja E, Tonlé I, Ngameni E. A sensitive voltammetric analysis and detection of Alizarin Red S onto a glassy carbon electrode modified by an organosmectite’. Sensors International (2021) 2:100126. doi:10.1016/j.sintl.2021.100126.
  • [25] Liu F, Kan X. Dual-analyte electrochemical sensor for fructose and alizarin red S specifically sensitive detection based on indicator displacement assay’. Electrochimica Acta (2019) 319:286–292. doi:10.1016/j.electacta.2019.07.001.
  • [26] Moulya KP, Manjunatha JG, Osman SM, Ataollahi N. A novel and efficient voltammetric sensor for the simultaneous determination of alizarin red S and tartrazine by using poly(leucine) functionalized carbon paste electrode’. Journal of Environmental Science and Health, Part A (2024) 59(3):103–112. doi:10.1080/10934529.2024.2339160.

Year 2025, Volume: 9 Issue: 1, 28 - 31, 15.07.2025

Abstract

References

  • [1] Musie W, Gonfa G. Fresh water resource, scarcity, water salinity challenges and possible remedies: A review’. Heliyon (2023) 9(8):18685. doi:10.1016/j.heliyon.2023.e18685.
  • [2] Cavin L. 1 - Freshwater Environments and Fishes’, in Freshwater Fishes: 250 Million Years of Evolutionary History: Elsevier (2017). 1–14.
  • [3] Ahmed T, Zounemat-Kermani M, Scholz M. Climate Change, Water Quality and Water-Related Challenges: A Review with Focus on Pakistan’. Int J Environ Res Public Health (2020) 17(22):8518. doi:10.3390/ijerph17228518.
  • [4] Wang J, Azam W. Natural resource scarcity, fossil fuel energy consumption, and total greenhouse gas emissions in top emitting countries’. Geoscience Frontiers (2024) 15(2):101757. doi:10.1016/j.gsf.2023.101757.
  • [5] Karimi-Maleh H. Recent advances in carbon nanomaterials-based electrochemical sensors for food azo dyes detection’. Food and Chemical Toxicology (2022) 164:112961. doi:10.1016/j.fct.2022.112961.
  • [6] Singh S, Patidar R, Srivastava VC, Lo S-L, Nidheesh PV. A critical review on the degradation mechanism of textile effluent during electrocatalytic oxidation: Removal optimization and degradation pathways’. Journal of Environmental Chemical Engineering (2023) 11(6):111277. doi:10.1016/j.jece.2023.111277.
  • [7] Venkatesh S, Arutchelvan V. Biosorption of Alizarin Red dye onto immobilized biomass of Canna indica: isotherm, kinetics, and thermodynamic studies’. Desalination and Water Treatment (2020) 196:409–421. doi:10.5004/dwt.2020.25798.
  • [8] Bessegato GG, Brugnera MF, Zanoni M. Electroanalytical sensing of dyes and colorants’. Current Opinion in Electrochemistry (2019) 16:134–142. doi:10.1016/j.coelec.2019.05.008.
  • [9] Ali H. Biodegradation of Synthetic Dyes—A Review’. Water Air Soil Pollut (2010) 213(1):251–273. doi:10.1007/s11270-010-0382-4.
  • [10] Singh S, Srivastava VC, Mall ID. Mechanism of Dye Degradation during Electrochemical Treatment’. J. Phys. Chem. C (2013) 117(29):15229–15240. doi:10.1021/jp405289f.
  • [11] Moreira FC, Boaventura R, Brillas E, Vilar V. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters’. Applied Catalysis B: Environmental (2017) 202:217–261. doi:10.1016/j.apcatb.2016.08.037.
  • [12] Panizza M, Oturan MA. Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode’. Electrochimica Acta (2011) 56(20):7084–7087. doi:10.1016/j.electacta.2011.05.105.
  • [13] Zhang J, Chi Y, Feng L. The mechanism of degradation of alizarin red by a white-rot fungus Trametes gibbosa’. BMC Biotechnol (2021) 21:64. doi:10.1186/s12896-021-00720-8.
  • [14] Nosrati H, Heydari M, Khodaei M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing’. Materials Today Bio (2023) 23:100823. doi:10.1016/j.mtbio.2023.100823.
  • [15] Ahmed HE. Green Synthesis of CeO2 Nanoparticles from the Abelmoschus esculentus Extract: Evaluation of Antioxidant, Anticancer, Antibacterial, and Wound-Healing Activities’. Molecules (2021) 26(15, Art. no. 15). doi:10.3390/molecules26154659.
  • [16] Durmuş S, Dalmaz A, Özdinçer M, Sivrikaya S. Preparation of Cerium Oxide Nanoparticles: An Efficient Catalyst to the Synthesis of Dimeric Disulphide Schiff Bases’. CBUJOS (2017) 13(1, Art. no. 1). doi:10.18466/cbayarfbe.282116.
  • [17] Li T, Liu H. A simple synthesis method of nanocrystals CeO2 modified rGO composites as electrode materials for supercapacitors with long time cycling stability’. Powder Technology (2018) 327:275–281. doi:10.1016/j.powtec.2017.12.073.
  • [18] Ahmed J, Faisal M, Algethami JS, Alsaiari M, Jalalah M, Harraz FA. CeO2·ZnO@biomass-derived carbon nanocomposite-based electrochemical sensor for efficient detection of ascorbic acid’. Analytical Biochemistry (2024) 692:115574. doi:10.1016/j.ab.2024.115574.
  • [19] Ahmed J, Faisal M, Algethami JS, Alkorbi AS, Harraz FA. Facile synthesis of CeO2·CuO-decorated biomass-derived carbon nanocomposite for sensitive detection of catechol by electrochemical technique’. Materials Science in Semiconductor Processing (2024) 172:108098. doi:10.1016/j.mssp.2023.108098.
  • [20] Wang W, Xu W, Zhao Z, Cheng M, Xun M, Liu H. Method and Application of Surface Modification of Cerium Dioxide’. Advanced Engineering Materials (2024) 26(14):2400092. doi:10.1002/adem.202400092.
  • [21] Çelebi N, Temur E, Doğan H, Yüksel A. The electrochemical fabrication of Cu@CeO2-rGO electrode for high-performance electrochemical nitrite sensor’. Diamond and Related Materials (2024) 143:110907. doi:10.1016/j.diamond.2024.110907.
  • [22] Schumacher S, Nagel T, Scheller FW, Gajovic-Eichelmann N. Alizarin Red S as an electrochemical indicator for saccharide recognition’. Electrochimica Acta (2011) 56(19):6607–6611. doi:10.1016/j.electacta.2011.04.081.
  • [23] Monnappa A, Manjunatha JG, Bhatt AS, Chenthattil R, Ananda P. Electrochemical Sensor for the Determination of Alizarin Red-S at Non-ionic Surfactant Modified Carbon Nanotube Paste Electrode’. Physical Chemistry Research (2019) 7(3):523–533. doi:10.22036/pcr.2019.185875.1636.
  • [24] Deffo G, Temgoua R, Mbokou S, Njanja E, Tonlé I, Ngameni E. A sensitive voltammetric analysis and detection of Alizarin Red S onto a glassy carbon electrode modified by an organosmectite’. Sensors International (2021) 2:100126. doi:10.1016/j.sintl.2021.100126.
  • [25] Liu F, Kan X. Dual-analyte electrochemical sensor for fructose and alizarin red S specifically sensitive detection based on indicator displacement assay’. Electrochimica Acta (2019) 319:286–292. doi:10.1016/j.electacta.2019.07.001.
  • [26] Moulya KP, Manjunatha JG, Osman SM, Ataollahi N. A novel and efficient voltammetric sensor for the simultaneous determination of alizarin red S and tartrazine by using poly(leucine) functionalized carbon paste electrode’. Journal of Environmental Science and Health, Part A (2024) 59(3):103–112. doi:10.1080/10934529.2024.2339160.
There are 26 citations in total.

Details

Primary Language English
Subjects Nanomaterials
Journal Section Research Articles
Authors

Neslihan Çelebi

Emir Coşkun This is me

Publication Date July 15, 2025
Submission Date November 28, 2024
Acceptance Date March 9, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Çelebi, N., & Coşkun, E. (2025). The Electrochemical Detection of Alizarin Red at Electrofabricated CeO2-Reduced Graphene Oxide Nanostructures. International Journal of Innovative Research and Reviews, 9(1), 28-31.