Research Article
BibTex RIS Cite

Evaluation of Scheduling Algorithms under Mobility in a Realistic Ray-Traced Wireless Network

Year 2025, Volume: 1 Issue: 2, 16 - 28, 29.09.2025

Abstract

Efficient scheduling and link adaptation mechanisms are essential for ensuring reliable and high-throughput communication in mobile wireless networks, particularly in the context of future 6G systems. This study investigates the performance of three prominent scheduling algorithms—Round Robin (RR), Best Channel Quality Indicator (Best-CQI), and Proportional Fair (PF)—in a realistic ray-traced wireless environment under user mobility. A time-evolving scenario is designed where mobile users follow predefined trajectories, and the downlink transmission is evaluated in terms of effective Signal-to-Interference-plus-Noise Ratio (SINR), spectral efficiency, and achieved Transport Block Error Rate (TBLER). Link adaptation is implemented via an Outer Loop Link Adaptation (OLLA) mechanism that dynamically adjusts the modulation and coding scheme based on feedback. The results show that PF scheduling achieves a balanced trade-off between throughput and fairness, maintaining spectral efficiency close to the Shannon capacity while satisfying the target BLER for all users. In contrast, Best-CQI provides high spectral efficiency for strong users but degrades the performance of users with weaker channel conditions. RR ensures fairness but suffers from throughput inefficiencies under dynamic SINR variations. The study highlights the importance of scheduler selection in mobility-aware systems and demonstrates how OLLA-driven adaptation improves robustness in realistic, time-varying channels.

References

  • [1] M. Elsayed and M. Erol-Kantarci, “AI-enabled future wireless networks: Challenges, opportunities, and open issues,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 70–77, 2019.
  • [2] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of massive MIMO. Cambridge University Press, 2016.
  • [3] E. Peralta, G. Pocovi, L. Kuru, K. Jayasinghe, and M. Valkama, “Outer loop link adaptation enhancements for ultra reliable low latency communications in 5G,” in 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), IEEE, 2022, pp. 1–7. Accessed: July 06, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9860717.
  • [4] ETSI, “TS 136 213 v14.2.0, LTE;Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” (3GPP TS 36.213 version 14.2.0 Release 14), 2017.
  • [5] C. A. Ariyaratne, “Link Adaptation Improvements for Long Term Evolution (LTE).” 2009. Accessed: July 06, 2025. [Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:833491.
  • [6] Ö. Yildiz and R. I. Sokullu, “Mobility and traffic-aware resource scheduling for downlink transmissions in LTE-A systems,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 27, no. 3, pp. 2021–2035, 2019.
  • [7] K. Fan, W. Chen, J. Li, X. Deng, X. Han, and M. Ding, “Mobility-aware joint user scheduling and resource allocation for low latency federated learning,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2023, pp. 1–6. Accessed: Aug. 08, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10233347.
  • [8] A. Deng and D. M. Blough, “Proactive Scheduling for mmWave Wireless LANs,” Computer Communications, vol. 228, p. 107979, 2024.
  • [9] H. S. Sucuoglu, “Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure,” Processes, vol. 13, no. 6, p. 1712, 2025.
  • [10] S. Wu, C. Chakrabarti, and A. Alkhateeb, “Proactively predicting dynamic 6G link blockages using LiDAR and in-band signatures,” IEEE open journal of the communications society, vol. 4, pp. 392–412, 2023.
  • [11] J. Hoydis et al., “Sionna RT: Differentiable ray tracing for radio propagation modeling,” in 2023 IEEE Globecom Workshops (GC Wkshps), IEEE, 2023, pp. 317–321. Accessed: Apr. 26, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10465179/
  • [12] J. Hoydis et al., “Learning radio environments by differentiable ray tracing,” IEEE Transactions on Machine Learning in Communications and Networking, 2024, Accessed: June 17, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10705152/
  • [13] N. Wei, A. Pokhariyal, T. B. Sørensen, T. E. Kolding, and P. E. Mogensen, “Performance of spatial division multiplexing MIMO with frequency domain packet scheduling: from theory to practice,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 6, pp. 890–900, 2008.
  • [14] A. A. Bin-Salem, T.-C. Wan, H. Naeem, M. Anbar, S. M. Hanshi, and A. Redjaimia, “Efficient models for enhancing the link adaptation performance of LTE/LTE-A networks,” J Wireless Com Network, vol. 2022, no. 1, p. 10, Dec. 2022, doi: 10.1186/s13638-022-02091-w.
  • [15] P. Paymard, A. Amiri, T. E. Kolding, and K. I. Pedersen, “Enhanced link adaptation for extended reality code block group based HARQ transmissions,” in 2022 IEEE Globecom Workshops (GC Wkshps), IEEE, 2022, pp. 711–716. Accessed: July 06, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10008622/
  • [16] Y.-J. Yu and J.-K. Wang, “NPRACH-aware link adaptation and uplink resource allocation in NB-IoT cellular networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4894–4906, 2021.
  • [17] R. Wang, R. Ma, G. Liu, W. Kang, W. Meng, and L. Chang, “Joint link adaption and resource allocation for satellite networks with network coding,” IEEE Transactions on Vehicular Technology, vol. 72, no. 12, pp. 15882–15898, 2023.
  • [18] J. Hoydis et al., “Sionna.” Accessed: June 17, 2025. [Online]. Available: https://nvlabs.github.io/sionna/
  • [19] ITU–R P.2040–3, “Effects of building materials and structures on radiowave propagation above about 100 MHz,” Geneva, 2023.
  • [20] K. I. Pedersen et al., “Frequency domain scheduling for OFDMA with limited and noisy channel feedback,” in 2007 IEEE 66th Vehicular Technology Conference, IEEE, 2007, pp. 1792–1796. Accessed: July 10, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/4350027.
  • [21] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” in VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No. 00CH37026), IEEE, 2000, pp. 1854–1858. Accessed: July 07, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/851593/

Gerçekçi Işın İzlemeli Kablosuz Ağda Hareketlilik Altında Çizelgeleme Algoritmalarının Değerlendirilmesi

Year 2025, Volume: 1 Issue: 2, 16 - 28, 29.09.2025

Abstract

Verimli planlama ve bağlantı uyarlama mekanizmaları, özellikle gelecekteki 6G sistemleri bağlamında, mobil kablosuz ağlarda güvenilir ve yüksek verimli iletişimi sağlamak için esastır. Bu çalışma, kullanıcı hareketliliği altında gerçekçi ışın izlemeli kablosuz ortamda üç önemli planlama algoritmasının performansını incelemektedir: Round Robin (RR), Best Channel Quality Indicator (Best-CQI) ve Proportional Fair (PF). Mobil kullanıcıların önceden tanımlanmış yörüngeleri takip ettiği ve aşağı bağlantı iletiminin etkili Sinyal-Girişim-Artı-Gürültü Oranı (SINR), spektral verimlilik ve elde edilen Taşıma Bloğu Hata Oranı (TBLER) açısından değerlendirildiği zamanla değişen bir senaryo tasarlanmıştır. Bağlantı uyarlaması, geri bildirime dayalı olarak modülasyon ve kodlama şemasını dinamik olarak ayarlayan bir Dış Döngü Bağlantı Uyarlaması (OLLA) mekanizması aracılığıyla uygulanmaktadır. Sonuçlar, PF planlamasının, tüm kullanıcılar için hedef BLER'yi karşılayarak Shannon kapasitesine yakın spektral verimliliği koruyarak verimlilik ve adalet arasında dengeli bir denge sağladığını göstermektedir. Buna karşılık, Best-CQI güçlü kullanıcılar için yüksek spektral verimlilik sağlamakta ancak daha zayıf kanal koşullarına sahip kullanıcıların performansını düşürmektedir. RR ise adaleti sağlar ancak dinamik SINR değişimleri altında verim yetersizliklerinden muzdariptir. Çalışma, hareketlilik farkındalığı olan sistemlerde zamanlayıcı seçiminin önemini vurgulamakta ve OLLA odaklı adaptasyonun gerçekçi, zamanla değişen kanallarda sağlamlığı nasıl iyileştirdiğini göstermektedir.

Ethical Statement

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

References

  • [1] M. Elsayed and M. Erol-Kantarci, “AI-enabled future wireless networks: Challenges, opportunities, and open issues,” IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 70–77, 2019.
  • [2] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of massive MIMO. Cambridge University Press, 2016.
  • [3] E. Peralta, G. Pocovi, L. Kuru, K. Jayasinghe, and M. Valkama, “Outer loop link adaptation enhancements for ultra reliable low latency communications in 5G,” in 2022 IEEE 95th Vehicular Technology Conference:(VTC2022-Spring), IEEE, 2022, pp. 1–7. Accessed: July 06, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9860717.
  • [4] ETSI, “TS 136 213 v14.2.0, LTE;Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” (3GPP TS 36.213 version 14.2.0 Release 14), 2017.
  • [5] C. A. Ariyaratne, “Link Adaptation Improvements for Long Term Evolution (LTE).” 2009. Accessed: July 06, 2025. [Online]. Available: https://www.diva-portal.org/smash/record.jsf?pid=diva2:833491.
  • [6] Ö. Yildiz and R. I. Sokullu, “Mobility and traffic-aware resource scheduling for downlink transmissions in LTE-A systems,” Turkish Journal of Electrical Engineering and Computer Sciences, vol. 27, no. 3, pp. 2021–2035, 2019.
  • [7] K. Fan, W. Chen, J. Li, X. Deng, X. Han, and M. Ding, “Mobility-aware joint user scheduling and resource allocation for low latency federated learning,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC), IEEE, 2023, pp. 1–6. Accessed: Aug. 08, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10233347.
  • [8] A. Deng and D. M. Blough, “Proactive Scheduling for mmWave Wireless LANs,” Computer Communications, vol. 228, p. 107979, 2024.
  • [9] H. S. Sucuoglu, “Development of Real-Time Fire Detection Robotic System with Hybrid-Cascade Machine Learning Detection Structure,” Processes, vol. 13, no. 6, p. 1712, 2025.
  • [10] S. Wu, C. Chakrabarti, and A. Alkhateeb, “Proactively predicting dynamic 6G link blockages using LiDAR and in-band signatures,” IEEE open journal of the communications society, vol. 4, pp. 392–412, 2023.
  • [11] J. Hoydis et al., “Sionna RT: Differentiable ray tracing for radio propagation modeling,” in 2023 IEEE Globecom Workshops (GC Wkshps), IEEE, 2023, pp. 317–321. Accessed: Apr. 26, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10465179/
  • [12] J. Hoydis et al., “Learning radio environments by differentiable ray tracing,” IEEE Transactions on Machine Learning in Communications and Networking, 2024, Accessed: June 17, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10705152/
  • [13] N. Wei, A. Pokhariyal, T. B. Sørensen, T. E. Kolding, and P. E. Mogensen, “Performance of spatial division multiplexing MIMO with frequency domain packet scheduling: from theory to practice,” IEEE Journal on Selected Areas in Communications, vol. 26, no. 6, pp. 890–900, 2008.
  • [14] A. A. Bin-Salem, T.-C. Wan, H. Naeem, M. Anbar, S. M. Hanshi, and A. Redjaimia, “Efficient models for enhancing the link adaptation performance of LTE/LTE-A networks,” J Wireless Com Network, vol. 2022, no. 1, p. 10, Dec. 2022, doi: 10.1186/s13638-022-02091-w.
  • [15] P. Paymard, A. Amiri, T. E. Kolding, and K. I. Pedersen, “Enhanced link adaptation for extended reality code block group based HARQ transmissions,” in 2022 IEEE Globecom Workshops (GC Wkshps), IEEE, 2022, pp. 711–716. Accessed: July 06, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10008622/
  • [16] Y.-J. Yu and J.-K. Wang, “NPRACH-aware link adaptation and uplink resource allocation in NB-IoT cellular networks,” IEEE Transactions on Vehicular Technology, vol. 70, no. 5, pp. 4894–4906, 2021.
  • [17] R. Wang, R. Ma, G. Liu, W. Kang, W. Meng, and L. Chang, “Joint link adaption and resource allocation for satellite networks with network coding,” IEEE Transactions on Vehicular Technology, vol. 72, no. 12, pp. 15882–15898, 2023.
  • [18] J. Hoydis et al., “Sionna.” Accessed: June 17, 2025. [Online]. Available: https://nvlabs.github.io/sionna/
  • [19] ITU–R P.2040–3, “Effects of building materials and structures on radiowave propagation above about 100 MHz,” Geneva, 2023.
  • [20] K. I. Pedersen et al., “Frequency domain scheduling for OFDMA with limited and noisy channel feedback,” in 2007 IEEE 66th Vehicular Technology Conference, IEEE, 2007, pp. 1792–1796. Accessed: July 10, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/4350027.
  • [21] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” in VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No. 00CH37026), IEEE, 2000, pp. 1854–1858. Accessed: July 07, 2025. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/851593/
There are 21 citations in total.

Details

Primary Language English
Subjects Electrical Engineering (Other)
Journal Section Research Article
Authors

Önem Yıldız 0000-0003-0675-6637

Publication Date September 29, 2025
Submission Date July 8, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 1 Issue: 2

Cite

APA Yıldız, Ö. (2025). Evaluation of Scheduling Algorithms under Mobility in a Realistic Ray-Traced Wireless Network. Innovative Approaches to Engineering Problems, 1(2), 16-28.