Review
BibTex RIS Cite

Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Sport Sciences: A Systematic Review

Year 2025, Volume: 7 Issue: 1, 9 - 27, 30.06.2025
https://doi.org/10.51538/intjourexerpsyc.1677927

Abstract

With advancing technological capabilities, neuroimaging techniques that analyze brain activity play a critical role in optimizing athletes' cognitive and physical performance. In this context, functional near-infrared spectroscopy (fNIRS), with its ability to provide real-time measurements, emerges as an innovative tool bridging the fields of sport sciences and neuroscience. This systematic review aims to examine the use of fNIRS technology in sport sciences and identify its contributions to evaluating athletes' cognitive performance and neurophysiological responses. Using the keywords "fNIRS," "sports," and "athletes," a systematic search was conducted in the Web of Science database to identify relevant peer-reviewed articles published between 2017 and 2024. A total of 35 studies were included based on their focus on cognitive performance, executive functions, and neurophysiological outcomes related to exercise or participation in sports. The reviewed studies demonstrate that fNIRS is an effective tool for enhancing cognitive performance, observing neurological adaptations, and understanding the acute and chronic effects of exercise. In conclusion, fNIRS stands out as an innovative technology in understanding cognitive and neurophysiological processes in sport sciences. Its portability and usability under field conditions offer extensive applications for improving athletes' performance and preserving their neurological health. In the future, broader use of this technology in sport sciences—particularly in field-based testing, rehabilitation processes, and assessments involving young or elite athletes—and its integration with other neuroimaging techniques are expected to yield more comprehensive and context-specific findings.

References

  • Adorni, R., Gatti, A., Brugnera, A., Sakatani, K., & Compare, A. (2016). Could fNIRS promote neuroscience approach in clinical psychology?. Frontiers in Psychology, 7,1-4. https://doi.org/10.3389/fpsyg.2016.00456
  • Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., McKendrick, R., & Parasuraman, R. (2013). Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: Empirical examples and a technological development. Frontiers in human neuroscience, 7, 871. https://doi.org/10.3389/fnhum.2013.00871
  • Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage, 85(1), 1-5. https://doi.org/10.1016/j.neuroimage.2013.11.033
  • Bozkurt, A., & Onaral, B. (2004). Safety assessment of near infrared light emitting diodes for diffuse optical measurements. BioMedical Engineering OnLine, 3;1-10. https://doi.org/10.1186/1475-925X-3-9
  • Brazy, J. F., Lewis, D. V., Mitnick, M. H., & Jöbsis, F. F. (1985). Noninvasive monitoring of cerebral oxygenation in preterm infants: Preliminary observations. Pediatrics, 75, 217-225.
  • Byun, K., Hyodo, K., Suwabe, K., Fukuie, T., Soya, H. (2016). Possible neurophysiological mechanisms for mild-exercise-enhanced executive function: An fNIRS neuroimaging study. The Journal of Physical Fitness and Sports Medicine, 5, 361-367. https://doi.org/10.7600/jpfsm.5.361
  • Carius, D., Herold, F., Clauß, M., Kaminski, E., Wagemann, F., Sterl, C., & Ragert, P. (2023). Increased cortical activity in novices compared to experts during table tennis: A whole-brain fNIRS study using threshold-free cluster enhancement analysis. Brain Topography, 36(4), 500–516. https://doi.org/10.1007/s10548-023-00963-y
  • Carius, D., Hörnig, L., Ragert, P., & Kaminski, E. (2020). Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neuroscience Letters, 715, 134604. https://doi.org/10.1016/j.neulet.2019.134604
  • Chance, B. (1991). Optical method. Annual Review of Biophysics and Biophysical Chemistry, 20,1-28. https://doi.org/10.1146/annurev.bb.20.060191.000245
  • Chang, H., Kim, K., Jung, Y. J., & Kato, M. (2017). Effects of acute high-intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex. Journal of Exercise Nutrition & Biochemistry, 21(2), 1–8. https://doi.org/10.20463/jenb.2017.0012
  • Cope, M., & Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical and Biological Engineering and Computing, 26, 289-294. https://doi.org/10.1007/BF02447083
  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., & Wyatt, J. S. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine & Biology, 33(12), 1433. https://doi.org/10.1088/0031-9155/33/12/008
  • Dror, O. E. (2001). Techniques of the brain and the paradox of emotions, 1880–1930. Science in Context, 14(4), 643-660. https://doi.org/10.1017/S026988970100028X
  • Duman, B. (2019). Sağlıklı bireylerde karar verme süreçlerinde etkili olan kortikal aktivite paternlerinin fNIRS ile değerlendirilmesi [Yayımlanmamış doktora tezi]. Ankara Üniversitesi
  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921-935. https://doi.org/10.1016/j.neuroimage.2012.03.049
  • Ferrari, M., Giannini, I., Sideri, G., & Zanette, E. (1985). Continuous non invasive monitoring of human brain by near infrared spectroscopy. In Oxygen transport to tissue VII (pp. 873-882). Springer US. https://doi.org/10.1007/978-1-4684-3291-6_88
  • Gao, Q., & Zhang, L. (2023). Brief mindfulness meditation intervention improves attentional control of athletes in virtual reality shooting competition: Evidence from fNIRS and eye tracking. Psychology of Sport and Exercise, 69, 102477. https://doi.org/10.1016/j.psychsport.2023.102477
  • Giles, G. E., Eddy, M. D., Brunyé, T. T., Urry, H. L., Graber, H. L., Barbour, R. L., Mahoney, C. R., Taylor, H. A., & Kanarek, R. B. (2018). Endurance exercise enhances emotional valence and emotion regulation. Frontiers in Human Neuroscience, 12, 398. https://doi.org/10.3389/fnhum.2018.00398
  • Grijalva, C., Hale, D., Wu, L., Toosizadeh, N., & Laksari, K. (2023). Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Frontiers in Human Neuroscience, 17, 1191284. https://doi.org/10.3389/fnhum.2023.1191284
  • Helmich, I., Coenen, J., Henckert, S., Pardalis, E., Schupp, S., & Lausberg, H. (2020). Reduced frontopolar brain activation characterizes concussed athletes with balance deficits. NeuroImage. Clinical, 25, 102164. https://doi.org/10.1016/j.nicl.2020.102164
  • Hoshi, Y. O. K. O., & Tamura, M. A. M. O. R. U. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity. Journal of Applied Physiology, 75(4), 1842-1846. https://doi.org/10.1152/jappl.1993.75.4.1842
  • Jain, D., Huber, C. M., Patton, D. A., McDonald, C. C., Wang, L., Ayaz, H., ... & Arbogast, K. B. (2023). Use of functional near-infrared spectroscopy to quantify neurophysiological deficits after repetitive head impacts in adolescent athletes. Sports Biomechanics, 1-15. https://doi.org/10.1080/14763141.2023.2229790
  • Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267. https://doi.org/10.1126/science.929199
  • Jobsis-vander Vliet, F. F. (1999). Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy. Journal of Biomedical Optics, 4(4), 392-396. https://doi.org/10.1117/1.429952
  • Kenville, R., Maudrich, T., Carius, D., & Ragert, P. (2017). Hemodynamic response alterations in sensorimotor areas as a function of barbell load levels during squatting: An fNIRS study. Frontiers in Human Neuroscience, 11, 241. https://doi.org/10.3389/fnhum.2017.00241
  • Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K. D., Dirnagl, U., Villringer, A., & Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 16(5), 817-826. https://doi.org/10.1097/00004647-199609000-00006
  • Köyağasıoğlu, O., Özgürbüz, C., Bediz, C. Ş., Güdücü, Ç., Aydınoğlu, R., & Akşit, T. (2022). The Effects of virtual reality nonphysical mental training on balance skills and functional near-ınfrared spectroscopy activity in healthy adults. Journal of Sport Rehabilitation, 31(4), 428–441. https://doi.org/10.1123/jsr.2021-0197
  • Kumar, V., Shivakumar, V., Chhabra, H., & Bose, A., Venkatasubramanian, G., Gangadhar, B. N. (2017). Functional near infra-red spectroscopy (fNIRS) in schizophrenia: A review. Asian Journal of Psychiatry, 27, 18–31. https://doi.org/10.1016/j.ajp.2017.02.009
  • Lai, Z., Huang, W., Lin, W., Weng, X., Mao, Y., & Xu, G. (2023). A single 1,500 m freestyle at maximal speed decreases cognitive function in athletes. Frontiers in Psychology, 14, 1283585. https://doi.org/10.3389/fpsyg.2023.1283585
  • Li, H., Zhang, L., Wang, J., Liu, J., & Sun, Y. (2022). Executive control of freestyle skiing aerials athletes in different training conditions. Frontiers in Psychology, 13, 968651. https://doi.org/10.3389/fpsyg.2022.968651
  • Li, W., Zhang, Q., Yang, R., Liu, B., Chen, G., Wang, B., Xu, T., Chen, J., Zhou, X., & Wen, S. (2023). Characteristics of resting state functional connectivity of motor cortex of high fitness level college students: Experimental evidence from functional near infrared spectroscopy (fNIRS). Brain and Behavior, 13(7), e3099. https://doi.org/10.1002/brb3.3099
  • Liu, J., Liu, Y., & Wu, L. (2024). Exploring the dynamics of prefrontal cortex in the interaction between orienteering experience and cognitive performance by fNIRS. Scientific Reports, 14(1), 14918. https://doi.org/10.1038/s41598-024-65747-1
  • Liu, Y., Lu, S., Liu, J., Zhao, M., Chao, Y., & Kang, P. (2022). A characterization of brain area activation in orienteers with different map-recognition memory ability task levels-based on fNIRS evidence. Brain Sciences, 12(11), 1561. https://doi.org/10.3390/brainsci12111561
  • Lucas, S. J., Cotter, J. D., Brassard, P., & Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. Journal of Cerebral Blood Flow and Metabolism, 35(6), 902–911. https://doi.org/10.1038/jcbfm.2015.49
  • Mancı, E., Deniz, O. C., Guducu, C., Gunay, E., & Bediz, C. S. (2021). Hemodynamic changes in athletes' brains: is there any adaptation?. General Physiology and Biophysics, 40(5), 387–396. https://doi.org/10.4149/gpb_2021027
  • Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Frontiers in Psychology, 9, 509. https://doi.org/10.3389/fpsyg.2018.00509
  • Monroe, D. C., Gist, N. H., Freese, E. C., O'Connor, P. J., McCully, K. K., & Dishman, R. K. (2016). Effects of sprint interval cycling on fatigue, energy, and cerebral oxygenation. Medicine and Science in Sports and Exercise, 48(4), 615–624. https://doi.org/10.1249/MSS.0000000000000809
  • Moriarty, T., Johnson, A., Thomas, M., Evers, C., Auten, A., Cavey, K., Dorman, K., & Bourbeau, K. (2022). Acute aerobic exercise-induced motor priming improves piano performance and alters motor cortex activation. Frontiers in Psychology, 13, 825322. https://doi.org/10.3389/fpsyg.2022.825322
  • Naseer, N., & Hong, K. S. (2015). fNIRS-based brain-computer interfaces: a review. Frontiers in Human Neuroscience, 9, 3. https://doi.org/10.3389/fnhum.2015.00003
  • Obrig, H. (2014). NIRS in clinical neurology—a ‘promising’tool?. Neuroimage, 85, 535-546. https://doi.org/10.1016/j.neuroimage.2013.03.045
  • Özgören, M. (2008). Beyin biyofiziği. Edt: Sirel Karakaş. Kognitif Nörobilimler, MN Medikal & Nobel Tıp Kitap Sarayı.
  • Park, I., Kim, Y., & Kim, S. K. (2020). Athlete-specific neural strategies under pressure: A fNIRS pilot study. International Journal of Environmental Research and Public Health, 17(22), 8464. https://doi.org/10.3390/ijerph17228464
  • Reynolds, E. O. R., Wyatt, J. S., Azzopardi, D., Delpy, D. T., Cady, E. B., Cope, M., & Wray, S. (1988). New non-invasive methods for assessing brain oxygenation and haemodynamics. British Medical Bulletin, 44(4), 1052-1075.. https://doi.org/10.1093/oxfordjournals.bmb.a072289
  • Sassaroli, A., & Fantini, S. (2004). Comment on the modified Beer-Lambert law for scattering media. Physics in Medicine and Biology, 49(14), 255–257. https://doi.org/10.1088/0031-9155/49/14/n07
  • Sathe, A., Shenoy, S., & Khandekar Sathe, P. (2024). Observation of cerebral cortex activation during static balance task in sporting and non-sporting individuals: A cross sectional fNIRS study. Journal of Bodywork and Movement Therapies. 40. 300-306. https://doi.org/10.1016/j.jbmt.2024.04.012
  • Schmaderer, L. F., Meyer, M., Reer, R., & Schumacher, N. (2023). What happens in the prefrontal cortex? Cognitive processing of novel and familiar stimuli in soccer: An exploratory fNIRS study. European Journal of Jport Jcience, 23(12), 2389–2399. https://doi.org/10.1080/17461391.2023.2238699
  • Seidel, O., Carius, D., Roediger, J., Rumpf, S., & Ragert, P. (2019). Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls. Experimental Brain Research, 237(11), 2957–2972. https://doi.org/10.1007/s00221-019-05646-4
  • Seidel-Marzi, O., Hähner, S., Ragert, P., & Carius, D. (2021). Task-Related hemodynamic response alterations during slacklining: An fNIRS study in advanced slackliners. Frontiers in Neuroergonomics, 2, 644490. https://doi.org/10.3389/fnrgo.2021.644490
  • Shao, X., He, L., Liu, Y., & Fu, Y. (2023). The effect of acute high-intensity interval training and Tabata training on inhibitory control and cortical activation in young adults. Frontiers in Neuroscience, 17, 1229307. https://doi.org/10.3389/fnins.2023.1229307
  • Sharma, A., Hind, K., Hume, P., Singh, J., & Neary, J. P. (2020). Neurovascular coupling by functional near ınfra-red spectroscopy and sport-related concussion in retired rugby players: The UK rugby health project. Frontiers in Human Neuroscience, 14, 42. https://doi.org/10.3389/fnhum.2020.00042
  • Slutter, M., Thammasan, N., Poel, M. (2021). Exploring the brain activity related to missing penalty kicks: An fNIRS study. Frontiers in Computer Science. 3. 661466. https://doi.org/10.3389/fcomp.2021.661466
  • Smith, K. J., & Ainslie, P. N. (2017). Regulation of cerebral blood flow and metabolism during exercise. Experimental Physiology, 102(11), 1356–1371. https://doi.org/10.1113/EP086249
  • Song, Y. T., Xiang, M. Q., & Zhong, P. (2024). Differences in brain activation during working memory tasks between badminton athletes and non-athletes: An fNIRS study. Brain and Cognition, 175, 106133. https://doi.org/10.1016/j.bandc.2024.106133
  • Strangman, G., Boas, D. A., & Sutton, J. P. (2002). Non-invasive neuroimaging using near-infrared light. Biological Psychiatry, 52(7), 679-693. https://doi.org/10.1016/s0006-3223(02)01550-0
  • Sun, F., Siu, A. Y., Wang, K., Zhang, B., Chan, M. H., Chan, K. H., Kong, P. S., Man, K. Y., & Chow, G. C. (2022). Effects of caffeine on performances of simulated match, wingate anaerobic test, and cognitive function test of elite taekwondo athletes in Hong Kong. Nutrients, 14(16), 3398. https://doi.org/10.3390/nu14163398
  • Tam, N. D., & Zouridakis, G. (2014). Temporal decoupling of oxy- and deoxy-hemoglobin hemodynamic responses detected by functional near-infrared spectroscopy (fNIRS). British Journal of Healthcare and Medical Research, 1(2). https://doi.org/10.14738/jbemi.12.146
  • Tetik, M. (2012). Beyin işlevsel yakın kızılötesi ölçümünü etkileyen etmenlerin değerlendirilmesi [Yayımlanmamış yüksek lisans tezi]. Dokuz Eylül Üniversitesi.
  • Thompson, T., Steffert, T., Ros, T., Leach, J., & Gruzelier, J. (2008). EEG applications for sport and performance. Methods, 45(4), 279-288. https://doi.org/10.1016/j.ymeth.2008.07.006
  • Trbovich, A., Sparto, P., Huppert, T., Elbin, R. J., Kissinger-Knox, A., Charek, D., Collins, M., Kontos, A. (2023). Changes in brain activation measured by functional Near-Infrared Spectroscopy associated with continuing to play following sport-related concussion among adolescent athletes. Neuropsychological Trends, 34, 39-58. http://dx.doi.org/10.7358/neur-2023-034-trbo
  • Wang, H., Cong, Y., Zhao, W., Li, X., & Li, L. (2023). A study of trust behavior and its neural basis in athletes under long-term exercise training. Neuroscience Letters, 805, 137218. https://doi.org/10.1016/j.neulet.2023.137218
  • Wang, S., & Lu, S. (2022). Brain functional connectivity in the resting state and the exercise state in elite tai chi Chuan athletes: An fNIRS study. Frontiers in Human Neuroscience, 16, 913108. https://doi.org/10.3389/fnhum.2022.913108
  • Wolff, W., Thürmer, J. L., Stadler, K. M., Schüler, J. (2019). Ready, set, go: Cortical hemodynamics during self-controlled sprint starts. Psychology of Sport and Exercise. 41, 21-28 https://doi.org/10.1016/j.psychsport.2018.11.002
  • Xiang, M., Li, G., Ye, J., Wu, M., Xu, R., & Hu, M. (2023). Effects of combined physical and cognitive training on executive function of adolescent shooting athletes: A functional near-infrared spectroscopy study. Sports Medicine and Health Science, 5(3), 220–228. https://doi.org/10.1016/j.smhs.2023.02.004
  • Xu, G., Li, X., Li, D., & Liu, X. (2014). A DAQ‐Device‐Based continuous wave near‐ınfrared spectroscopy system for measuring human functional brain activity. Computational and Mathematical Methods in Medicine, 2014(1), 107320. https://doi.org/10.1155/2014/107320
  • Yu, M., & Liu, Y. (2021). Differences in executive function of the attention network between athletes from interceptive and strategic sports. Journal of Motor Behavior, 53(4), 419–430. https://doi.org/10.1080/00222895.2020.1790486
  • Yu, M., Xu, S., Hu, H., Li, S., & Yang, G. (2023). Differences in right hemisphere fNIRS activation associated with executive network during performance of the lateralized attention network tast by elite, expert and novice ice hockey athletes. Behavioural Brain Research, 443, 114209. https://doi.org/10.1016/j.bbr.2022.114209
  • Zhang, Q., Zhang, P., Song, L., Yang, Y., Yuan, S., Chen, Y., Sun, S., & Bai, X. (2019). Brain activation of elite race walkers in action observation, motor ımagery, and motor execution tasks: A pilot study. Frontiers in Human Neuroscience, 13, 80. https://doi.org/10.3389/fnhum.2019.00080
  • Zhu, Y., Sun, F., Li, C., Huang, J., Hu, M., Wang, K., He, S., & Wu, J. (2022). Acute effects of mindfulness-based intervention on athlete cognitive function: An fNIRS investigation. Journal of Exercise Science and Fitness, 20(2), 90–99. https://doi.org/10.1016/j.jesf.2022.01.003

Spor Bilimlerinde Fonksiyonel Yakın Kızılötesi Spektroskopi (fNIRS) Uygulamaları: Sistematik Derleme

Year 2025, Volume: 7 Issue: 1, 9 - 27, 30.06.2025
https://doi.org/10.51538/intjourexerpsyc.1677927

Abstract

Gelişen teknolojik imkanlar dahilinde beyin aktivitesini analiz eden nöro-görüntüleme teknikleri, sporcuların bilişsel ve fiziksel performansını optimize etmede kritik bir rol oynamaktadır. Bu bağlamda, gerçek zamanlı ölçümler yapabilme özelliği ile İşlevsel Yakın Kızılötesi Spektroskopi (fNIRS), spor bilimleri ve nörobilim arasındaki köprüyü oluşturan yenilikçi bir araç olarak öne çıkmaktadır. Bu sistematik derlemenin amacı, spor bilimleri alanında fNIRS teknolojisinin kullanımını incelemek ve sporcuların bilişsel performansları ile nörofizyolojik tepkilerini değerlendirmede sağladığı katkıları belirlemektir. Araştırmada, "fNIRS", "sports" ve "athletes" anahtar kelimeleri kullanılarak Web of Science veri tabanında sistematik bir tarama gerçekleştirilmiştir. 2017 ile 2024 yılları arasında yayımlanmış hakemli makaleler arasından, egzersiz ya da spora katılım ile ilişkili bilişsel performans, yürütücü işlevler ve nörofizyolojik çıktılara odaklanan toplam 35 çalışma incelemeye dahil edilmiştir. İncelenen çalışmalar, fNIRS teknolojisinin bilişsel performansı artırma, nörolojik adaptasyonları gözlemleme ve egzersizin akut/kronik etkilerini anlama konularında etkili bir araç olduğunu göstermektedir. Sonuç olarak fNIRS’ın spor bilimlerinde bilişsel ve nöro-fizyolojik süreçlerin anlaşılmasında yenilikçi bir teknoloji olarak kendini gösterdiği, taşınabilirliği ve saha koşullarında kullanılabilirliği ile sporcuların performansını artırmak ve nörolojik sağlıklarını korumak için geniş uygulama alanları sunduğu görülmektedir. Gelecekte, bu teknolojinin spor bilimlerinde (özellikle saha tabanlı testlerde, rehabilitasyon süreçlerinde ve genç veya elit sporcuları içeren değerlendirmelerde) daha geniş kullanımının ve diğer nörogörüntüleme teknikleriyle entegrasyonunun daha kapsamlı ve bağlama özgü bulgular sağlaması beklenmektedir.

References

  • Adorni, R., Gatti, A., Brugnera, A., Sakatani, K., & Compare, A. (2016). Could fNIRS promote neuroscience approach in clinical psychology?. Frontiers in Psychology, 7,1-4. https://doi.org/10.3389/fpsyg.2016.00456
  • Ayaz, H., Onaral, B., Izzetoglu, K., Shewokis, P. A., McKendrick, R., & Parasuraman, R. (2013). Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: Empirical examples and a technological development. Frontiers in human neuroscience, 7, 871. https://doi.org/10.3389/fnhum.2013.00871
  • Boas, D. A., Elwell, C. E., Ferrari, M., & Taga, G. (2014). Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage, 85(1), 1-5. https://doi.org/10.1016/j.neuroimage.2013.11.033
  • Bozkurt, A., & Onaral, B. (2004). Safety assessment of near infrared light emitting diodes for diffuse optical measurements. BioMedical Engineering OnLine, 3;1-10. https://doi.org/10.1186/1475-925X-3-9
  • Brazy, J. F., Lewis, D. V., Mitnick, M. H., & Jöbsis, F. F. (1985). Noninvasive monitoring of cerebral oxygenation in preterm infants: Preliminary observations. Pediatrics, 75, 217-225.
  • Byun, K., Hyodo, K., Suwabe, K., Fukuie, T., Soya, H. (2016). Possible neurophysiological mechanisms for mild-exercise-enhanced executive function: An fNIRS neuroimaging study. The Journal of Physical Fitness and Sports Medicine, 5, 361-367. https://doi.org/10.7600/jpfsm.5.361
  • Carius, D., Herold, F., Clauß, M., Kaminski, E., Wagemann, F., Sterl, C., & Ragert, P. (2023). Increased cortical activity in novices compared to experts during table tennis: A whole-brain fNIRS study using threshold-free cluster enhancement analysis. Brain Topography, 36(4), 500–516. https://doi.org/10.1007/s10548-023-00963-y
  • Carius, D., Hörnig, L., Ragert, P., & Kaminski, E. (2020). Characterizing cortical hemodynamic changes during climbing and its relation to climbing expertise. Neuroscience Letters, 715, 134604. https://doi.org/10.1016/j.neulet.2019.134604
  • Chance, B. (1991). Optical method. Annual Review of Biophysics and Biophysical Chemistry, 20,1-28. https://doi.org/10.1146/annurev.bb.20.060191.000245
  • Chang, H., Kim, K., Jung, Y. J., & Kato, M. (2017). Effects of acute high-intensity resistance exercise on cognitive function and oxygenation in prefrontal cortex. Journal of Exercise Nutrition & Biochemistry, 21(2), 1–8. https://doi.org/10.20463/jenb.2017.0012
  • Cope, M., & Delpy, D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Medical and Biological Engineering and Computing, 26, 289-294. https://doi.org/10.1007/BF02447083
  • Delpy, D. T., Cope, M., van der Zee, P., Arridge, S., Wray, S., & Wyatt, J. S. (1988). Estimation of optical pathlength through tissue from direct time of flight measurement. Physics in Medicine & Biology, 33(12), 1433. https://doi.org/10.1088/0031-9155/33/12/008
  • Dror, O. E. (2001). Techniques of the brain and the paradox of emotions, 1880–1930. Science in Context, 14(4), 643-660. https://doi.org/10.1017/S026988970100028X
  • Duman, B. (2019). Sağlıklı bireylerde karar verme süreçlerinde etkili olan kortikal aktivite paternlerinin fNIRS ile değerlendirilmesi [Yayımlanmamış doktora tezi]. Ankara Üniversitesi
  • Ferrari, M., & Quaresima, V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage, 63(2), 921-935. https://doi.org/10.1016/j.neuroimage.2012.03.049
  • Ferrari, M., Giannini, I., Sideri, G., & Zanette, E. (1985). Continuous non invasive monitoring of human brain by near infrared spectroscopy. In Oxygen transport to tissue VII (pp. 873-882). Springer US. https://doi.org/10.1007/978-1-4684-3291-6_88
  • Gao, Q., & Zhang, L. (2023). Brief mindfulness meditation intervention improves attentional control of athletes in virtual reality shooting competition: Evidence from fNIRS and eye tracking. Psychology of Sport and Exercise, 69, 102477. https://doi.org/10.1016/j.psychsport.2023.102477
  • Giles, G. E., Eddy, M. D., Brunyé, T. T., Urry, H. L., Graber, H. L., Barbour, R. L., Mahoney, C. R., Taylor, H. A., & Kanarek, R. B. (2018). Endurance exercise enhances emotional valence and emotion regulation. Frontiers in Human Neuroscience, 12, 398. https://doi.org/10.3389/fnhum.2018.00398
  • Grijalva, C., Hale, D., Wu, L., Toosizadeh, N., & Laksari, K. (2023). Hyper-acute effects of sub-concussive soccer headers on brain function and hemodynamics. Frontiers in Human Neuroscience, 17, 1191284. https://doi.org/10.3389/fnhum.2023.1191284
  • Helmich, I., Coenen, J., Henckert, S., Pardalis, E., Schupp, S., & Lausberg, H. (2020). Reduced frontopolar brain activation characterizes concussed athletes with balance deficits. NeuroImage. Clinical, 25, 102164. https://doi.org/10.1016/j.nicl.2020.102164
  • Hoshi, Y. O. K. O., & Tamura, M. A. M. O. R. U. (1993). Dynamic multichannel near-infrared optical imaging of human brain activity. Journal of Applied Physiology, 75(4), 1842-1846. https://doi.org/10.1152/jappl.1993.75.4.1842
  • Jain, D., Huber, C. M., Patton, D. A., McDonald, C. C., Wang, L., Ayaz, H., ... & Arbogast, K. B. (2023). Use of functional near-infrared spectroscopy to quantify neurophysiological deficits after repetitive head impacts in adolescent athletes. Sports Biomechanics, 1-15. https://doi.org/10.1080/14763141.2023.2229790
  • Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267. https://doi.org/10.1126/science.929199
  • Jobsis-vander Vliet, F. F. (1999). Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy. Journal of Biomedical Optics, 4(4), 392-396. https://doi.org/10.1117/1.429952
  • Kenville, R., Maudrich, T., Carius, D., & Ragert, P. (2017). Hemodynamic response alterations in sensorimotor areas as a function of barbell load levels during squatting: An fNIRS study. Frontiers in Human Neuroscience, 11, 241. https://doi.org/10.3389/fnhum.2017.00241
  • Kleinschmidt, A., Obrig, H., Requardt, M., Merboldt, K. D., Dirnagl, U., Villringer, A., & Frahm, J. (1996). Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. Journal of Cerebral Blood Flow & Metabolism, 16(5), 817-826. https://doi.org/10.1097/00004647-199609000-00006
  • Köyağasıoğlu, O., Özgürbüz, C., Bediz, C. Ş., Güdücü, Ç., Aydınoğlu, R., & Akşit, T. (2022). The Effects of virtual reality nonphysical mental training on balance skills and functional near-ınfrared spectroscopy activity in healthy adults. Journal of Sport Rehabilitation, 31(4), 428–441. https://doi.org/10.1123/jsr.2021-0197
  • Kumar, V., Shivakumar, V., Chhabra, H., & Bose, A., Venkatasubramanian, G., Gangadhar, B. N. (2017). Functional near infra-red spectroscopy (fNIRS) in schizophrenia: A review. Asian Journal of Psychiatry, 27, 18–31. https://doi.org/10.1016/j.ajp.2017.02.009
  • Lai, Z., Huang, W., Lin, W., Weng, X., Mao, Y., & Xu, G. (2023). A single 1,500 m freestyle at maximal speed decreases cognitive function in athletes. Frontiers in Psychology, 14, 1283585. https://doi.org/10.3389/fpsyg.2023.1283585
  • Li, H., Zhang, L., Wang, J., Liu, J., & Sun, Y. (2022). Executive control of freestyle skiing aerials athletes in different training conditions. Frontiers in Psychology, 13, 968651. https://doi.org/10.3389/fpsyg.2022.968651
  • Li, W., Zhang, Q., Yang, R., Liu, B., Chen, G., Wang, B., Xu, T., Chen, J., Zhou, X., & Wen, S. (2023). Characteristics of resting state functional connectivity of motor cortex of high fitness level college students: Experimental evidence from functional near infrared spectroscopy (fNIRS). Brain and Behavior, 13(7), e3099. https://doi.org/10.1002/brb3.3099
  • Liu, J., Liu, Y., & Wu, L. (2024). Exploring the dynamics of prefrontal cortex in the interaction between orienteering experience and cognitive performance by fNIRS. Scientific Reports, 14(1), 14918. https://doi.org/10.1038/s41598-024-65747-1
  • Liu, Y., Lu, S., Liu, J., Zhao, M., Chao, Y., & Kang, P. (2022). A characterization of brain area activation in orienteers with different map-recognition memory ability task levels-based on fNIRS evidence. Brain Sciences, 12(11), 1561. https://doi.org/10.3390/brainsci12111561
  • Lucas, S. J., Cotter, J. D., Brassard, P., & Bailey, D. M. (2015). High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. Journal of Cerebral Blood Flow and Metabolism, 35(6), 902–911. https://doi.org/10.1038/jcbfm.2015.49
  • Mancı, E., Deniz, O. C., Guducu, C., Gunay, E., & Bediz, C. S. (2021). Hemodynamic changes in athletes' brains: is there any adaptation?. General Physiology and Biophysics, 40(5), 387–396. https://doi.org/10.4149/gpb_2021027
  • Mandolesi, L., Polverino, A., Montuori, S., Foti, F., Ferraioli, G., Sorrentino, P., & Sorrentino, G. (2018). Effects of physical exercise on cognitive functioning and wellbeing: Biological and psychological benefits. Frontiers in Psychology, 9, 509. https://doi.org/10.3389/fpsyg.2018.00509
  • Monroe, D. C., Gist, N. H., Freese, E. C., O'Connor, P. J., McCully, K. K., & Dishman, R. K. (2016). Effects of sprint interval cycling on fatigue, energy, and cerebral oxygenation. Medicine and Science in Sports and Exercise, 48(4), 615–624. https://doi.org/10.1249/MSS.0000000000000809
  • Moriarty, T., Johnson, A., Thomas, M., Evers, C., Auten, A., Cavey, K., Dorman, K., & Bourbeau, K. (2022). Acute aerobic exercise-induced motor priming improves piano performance and alters motor cortex activation. Frontiers in Psychology, 13, 825322. https://doi.org/10.3389/fpsyg.2022.825322
  • Naseer, N., & Hong, K. S. (2015). fNIRS-based brain-computer interfaces: a review. Frontiers in Human Neuroscience, 9, 3. https://doi.org/10.3389/fnhum.2015.00003
  • Obrig, H. (2014). NIRS in clinical neurology—a ‘promising’tool?. Neuroimage, 85, 535-546. https://doi.org/10.1016/j.neuroimage.2013.03.045
  • Özgören, M. (2008). Beyin biyofiziği. Edt: Sirel Karakaş. Kognitif Nörobilimler, MN Medikal & Nobel Tıp Kitap Sarayı.
  • Park, I., Kim, Y., & Kim, S. K. (2020). Athlete-specific neural strategies under pressure: A fNIRS pilot study. International Journal of Environmental Research and Public Health, 17(22), 8464. https://doi.org/10.3390/ijerph17228464
  • Reynolds, E. O. R., Wyatt, J. S., Azzopardi, D., Delpy, D. T., Cady, E. B., Cope, M., & Wray, S. (1988). New non-invasive methods for assessing brain oxygenation and haemodynamics. British Medical Bulletin, 44(4), 1052-1075.. https://doi.org/10.1093/oxfordjournals.bmb.a072289
  • Sassaroli, A., & Fantini, S. (2004). Comment on the modified Beer-Lambert law for scattering media. Physics in Medicine and Biology, 49(14), 255–257. https://doi.org/10.1088/0031-9155/49/14/n07
  • Sathe, A., Shenoy, S., & Khandekar Sathe, P. (2024). Observation of cerebral cortex activation during static balance task in sporting and non-sporting individuals: A cross sectional fNIRS study. Journal of Bodywork and Movement Therapies. 40. 300-306. https://doi.org/10.1016/j.jbmt.2024.04.012
  • Schmaderer, L. F., Meyer, M., Reer, R., & Schumacher, N. (2023). What happens in the prefrontal cortex? Cognitive processing of novel and familiar stimuli in soccer: An exploratory fNIRS study. European Journal of Jport Jcience, 23(12), 2389–2399. https://doi.org/10.1080/17461391.2023.2238699
  • Seidel, O., Carius, D., Roediger, J., Rumpf, S., & Ragert, P. (2019). Changes in neurovascular coupling during cycling exercise measured by multi-distance fNIRS: a comparison between endurance athletes and physically active controls. Experimental Brain Research, 237(11), 2957–2972. https://doi.org/10.1007/s00221-019-05646-4
  • Seidel-Marzi, O., Hähner, S., Ragert, P., & Carius, D. (2021). Task-Related hemodynamic response alterations during slacklining: An fNIRS study in advanced slackliners. Frontiers in Neuroergonomics, 2, 644490. https://doi.org/10.3389/fnrgo.2021.644490
  • Shao, X., He, L., Liu, Y., & Fu, Y. (2023). The effect of acute high-intensity interval training and Tabata training on inhibitory control and cortical activation in young adults. Frontiers in Neuroscience, 17, 1229307. https://doi.org/10.3389/fnins.2023.1229307
  • Sharma, A., Hind, K., Hume, P., Singh, J., & Neary, J. P. (2020). Neurovascular coupling by functional near ınfra-red spectroscopy and sport-related concussion in retired rugby players: The UK rugby health project. Frontiers in Human Neuroscience, 14, 42. https://doi.org/10.3389/fnhum.2020.00042
  • Slutter, M., Thammasan, N., Poel, M. (2021). Exploring the brain activity related to missing penalty kicks: An fNIRS study. Frontiers in Computer Science. 3. 661466. https://doi.org/10.3389/fcomp.2021.661466
  • Smith, K. J., & Ainslie, P. N. (2017). Regulation of cerebral blood flow and metabolism during exercise. Experimental Physiology, 102(11), 1356–1371. https://doi.org/10.1113/EP086249
  • Song, Y. T., Xiang, M. Q., & Zhong, P. (2024). Differences in brain activation during working memory tasks between badminton athletes and non-athletes: An fNIRS study. Brain and Cognition, 175, 106133. https://doi.org/10.1016/j.bandc.2024.106133
  • Strangman, G., Boas, D. A., & Sutton, J. P. (2002). Non-invasive neuroimaging using near-infrared light. Biological Psychiatry, 52(7), 679-693. https://doi.org/10.1016/s0006-3223(02)01550-0
  • Sun, F., Siu, A. Y., Wang, K., Zhang, B., Chan, M. H., Chan, K. H., Kong, P. S., Man, K. Y., & Chow, G. C. (2022). Effects of caffeine on performances of simulated match, wingate anaerobic test, and cognitive function test of elite taekwondo athletes in Hong Kong. Nutrients, 14(16), 3398. https://doi.org/10.3390/nu14163398
  • Tam, N. D., & Zouridakis, G. (2014). Temporal decoupling of oxy- and deoxy-hemoglobin hemodynamic responses detected by functional near-infrared spectroscopy (fNIRS). British Journal of Healthcare and Medical Research, 1(2). https://doi.org/10.14738/jbemi.12.146
  • Tetik, M. (2012). Beyin işlevsel yakın kızılötesi ölçümünü etkileyen etmenlerin değerlendirilmesi [Yayımlanmamış yüksek lisans tezi]. Dokuz Eylül Üniversitesi.
  • Thompson, T., Steffert, T., Ros, T., Leach, J., & Gruzelier, J. (2008). EEG applications for sport and performance. Methods, 45(4), 279-288. https://doi.org/10.1016/j.ymeth.2008.07.006
  • Trbovich, A., Sparto, P., Huppert, T., Elbin, R. J., Kissinger-Knox, A., Charek, D., Collins, M., Kontos, A. (2023). Changes in brain activation measured by functional Near-Infrared Spectroscopy associated with continuing to play following sport-related concussion among adolescent athletes. Neuropsychological Trends, 34, 39-58. http://dx.doi.org/10.7358/neur-2023-034-trbo
  • Wang, H., Cong, Y., Zhao, W., Li, X., & Li, L. (2023). A study of trust behavior and its neural basis in athletes under long-term exercise training. Neuroscience Letters, 805, 137218. https://doi.org/10.1016/j.neulet.2023.137218
  • Wang, S., & Lu, S. (2022). Brain functional connectivity in the resting state and the exercise state in elite tai chi Chuan athletes: An fNIRS study. Frontiers in Human Neuroscience, 16, 913108. https://doi.org/10.3389/fnhum.2022.913108
  • Wolff, W., Thürmer, J. L., Stadler, K. M., Schüler, J. (2019). Ready, set, go: Cortical hemodynamics during self-controlled sprint starts. Psychology of Sport and Exercise. 41, 21-28 https://doi.org/10.1016/j.psychsport.2018.11.002
  • Xiang, M., Li, G., Ye, J., Wu, M., Xu, R., & Hu, M. (2023). Effects of combined physical and cognitive training on executive function of adolescent shooting athletes: A functional near-infrared spectroscopy study. Sports Medicine and Health Science, 5(3), 220–228. https://doi.org/10.1016/j.smhs.2023.02.004
  • Xu, G., Li, X., Li, D., & Liu, X. (2014). A DAQ‐Device‐Based continuous wave near‐ınfrared spectroscopy system for measuring human functional brain activity. Computational and Mathematical Methods in Medicine, 2014(1), 107320. https://doi.org/10.1155/2014/107320
  • Yu, M., & Liu, Y. (2021). Differences in executive function of the attention network between athletes from interceptive and strategic sports. Journal of Motor Behavior, 53(4), 419–430. https://doi.org/10.1080/00222895.2020.1790486
  • Yu, M., Xu, S., Hu, H., Li, S., & Yang, G. (2023). Differences in right hemisphere fNIRS activation associated with executive network during performance of the lateralized attention network tast by elite, expert and novice ice hockey athletes. Behavioural Brain Research, 443, 114209. https://doi.org/10.1016/j.bbr.2022.114209
  • Zhang, Q., Zhang, P., Song, L., Yang, Y., Yuan, S., Chen, Y., Sun, S., & Bai, X. (2019). Brain activation of elite race walkers in action observation, motor ımagery, and motor execution tasks: A pilot study. Frontiers in Human Neuroscience, 13, 80. https://doi.org/10.3389/fnhum.2019.00080
  • Zhu, Y., Sun, F., Li, C., Huang, J., Hu, M., Wang, K., He, S., & Wu, J. (2022). Acute effects of mindfulness-based intervention on athlete cognitive function: An fNIRS investigation. Journal of Exercise Science and Fitness, 20(2), 90–99. https://doi.org/10.1016/j.jesf.2022.01.003
There are 68 citations in total.

Details

Primary Language English
Subjects Sports Science and Exercise (Other)
Journal Section Review Articles
Authors

Muhammed Sıddık Çemç 0000-0001-5442-0869

Özgür Gülen 0000-0002-2305-3098

Publication Date June 30, 2025
Submission Date April 16, 2025
Acceptance Date June 30, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Çemç, M. S., & Gülen, Ö. (2025). Applications of Functional Near-Infrared Spectroscopy (fNIRS) in Sport Sciences: A Systematic Review. Uluslararası Egzersiz Psikolojisi Dergisi, 7(1), 9-27. https://doi.org/10.51538/intjourexerpsyc.1677927