Review
BibTex RIS Cite

THE INTERACTION BETWEEN ACUTE EXERCISE AND GUT MICROBIOTA: A BIBLIOMETRIC ANALYSIS

Year 2025, Volume: 12 Issue: 2, 82 - 94, 20.08.2025

Abstract

In recent years, microbiota has emerged as a pivotal component in human health, intersecting dynamically with the field of exercise science. Despite the rapid development of this research area, comprehensive analyses regarding the thematic distribution of studies, prominent concepts, influential researchers, and institutions remain limited in the literature. However, identifying the current state and developmental trends of the field holds strategic importance for guiding future research. Accordingly, the aim of this study is to examine the relationship between exercise and microbiota through a bibliometric approach and to reveal multidimensional trends in the literature. The research was conducted within the framework of qualitative methods, specifically document analysis; the Web of Science database was solely used for data collection. The bibliographic data obtained (n=12) were analyzed using VOSviewer software. Three main bibliometric analyses were performed: (1) Keyword co-occurrence analysis was used to identify thematic foci and trends; (2) Institutional collaboration networks were analyzed to evaluate prominent universities and partnerships; (3) Author collaboration networks were used to assess the productivity and interactions of individual researchers. The findings indicate that studies in this field predominantly focus on endurance exercise and underlying biological mechanisms, while collaborations tend to be limited and fragmented. Although certain researchers and institutions stand out, there is a need for more international and multi-center studies in the field.

References

  • Antonio, N., Andrea, T., Claudio, T., Beatrice, P., Pamela, C., Chiara, M., Gian, L. de’ A., Francesco, D. M., & Tiziana, M. (2018). Digestive disorders and intestinal microbiota. Acta Bio Medica: Atenei Parmensis, 89(Suppl 9), 47–51. https://doi.org/10.23750/abm.v89i9-S.7912
  • Cani, P. D. (2013). Gut microbiota and obesity: Lessons from the microbiome. Briefings in Functional Genomics, 12(4), 381–387. https://doi.org/10.1093/bfgp/elt014
  • Clauss, M., Gérard, P., Mosca, A., & Leclerc, M. (2021). Interplay between exercise and gut microbiome in the context of human health and performance. Frontiers in Nutrition, 8, 637010. https://doi.org/10.3389/fnut.2021.637010
  • Cook, M. D., Allen, J. M., Pence, B. D., Wallig, M. A., Gaskins, H. R., White, B. A., & Woods, J. A. (2016). Exercise and gut immune function: Evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology & Cell Biology, 94(2), 158–163. https://doi.org/10.1038/icb.2015.108
  • Geng, Z.-H., Zhu, Y., Li, Q.-L., Zhao, C., & Zhou, P.-H. (2022). Enteric nervous system: The bridge between the gut microbiota and neurological disorders. Frontiers in Aging Neuroscience, 14, 810483. https://doi.org/10.3389/fnagi.2022.810483
  • Hawley, J. A., Forster, S. C., & Giles, E. M. (2025). Exercise, the gut microbiome and gastrointestinal diseases: Therapeutic impact and molecular mechanisms. Gastroenterology, 169(1), 48–62. https://doi.org/10.1053/j.gastro.2025.01.224
  • He, X., & Slupsky, C. M. (2014). Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial–mammalian co-metabolism. Journal of Proteome Research, 13(12), 5281–5292. https://doi.org/10.1021/pr500629t
  • Hentges, D. J. (2012). Human intestinal microflora in health and disease. Academic Press.
  • Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (2008). Equine exercise physiology: The science of exercise in the athletic horse. Elsevier Health Sciences.
  • Huang, L., Li, T., Zhou, M., Deng, M., Zhang, L., Yi, L., Zhu, J., Zhu, X., & Mi, M. (2022). Hypoxia improves endurance performance by enhancing short chain fatty acids production via gut microbiota remodeling. Frontiers in Microbiology, 12, 820691. https://doi.org/10.3389/fmicb.2021.820691
  • Jurdana, M., & Maganja, D. B. (2023). Regular physical activity influences gut microbiota with positive health effects. In Advances in Probiotics for Health and Nutrition. IntechOpen. https://doi.org/10.5772/intechopen.110725
  • Kaur, S., Thukral, S. K., Kaur, P., & Samota, M. K. (2021). Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 4, 100043. https://doi.org/10.1016/j.fufo.2021.100043
  • Kraemer, W. J., Fleck, S. J., & Deschenes, M. R. (2011). Exercise physiology: Integrating theory and application. Lippincott Williams & Wilkins.
  • Mach, N., & Fuster-Botella, D. (2017). Endurance exercise and gut microbiota: A review. Journal of Sport and Health Science, 6(2), 179–197. https://doi.org/10.1016/j.jshs.2016.05.001
  • Magrone, T., & Jirillo, E. (2013). The interaction between gut microbiota and age-related changes in immune function and inflammation. Immunity & Ageing, 10, 31. https://doi.org/10.1186/1742-4933-10-31
  • Marttinen, M., Ala-Jaakkola, R., Laitila, A., & Lehtinen, M. J. (2020). Gut microbiota, probiotics and physical performance in athletes and physically active individuals. Nutrients, 12(10), 2936. https://doi.org/10.3390/nu12102936
  • Moitinho-Silva, L., Wegener, M., May, S., Schrinner, F., Akhtar, A., Boysen, T. J., Schaeffer, E., Hansen, C., Schmidt, T., Rühlemann, M. C., Hübenthal, M., Rausch, P., Kondakci, M. T., Maetzler, W., Weidinger, S., Laudes, M., Süß, P., Schulte, D., Junker, R., … Franke, A. (2021). Short-term physical exercise impacts on the human holobiont obtained by a randomised intervention study. BMC Microbiology, 21(1), 162. https://doi.org/10.1186/s12866-021-02214-1
  • Nesci, A., Carnuccio, C., Ruggieri, V., D’Alessandro, A., Di Giorgio, A., Santoro, L., Gasbarrini, A., Santoliquido, A., & Ponziani, F. R. (2023). Gut microbiota and cardiovascular disease: Evidence on the metabolic and inflammatory background of a complex relationship. International Journal of Molecular Sciences, 24(10), 9087. https://doi.org/10.3390/ijms24109087
  • Okamoto, T., Morino, K., Ugi, S., Nakagawa, F., Lemecha, M., Ida, S., Ohashi, N., Sato, D., Fujita, Y., & Maegawa, H. (2019). Microbiome potentiates endurance exercise through intestinal acetate production. American Journal of Physiology-Endocrinology and Metabolism, 316(5), E956–E966. https://doi.org/10.1152/ajpendo.00510.2018
  • Passos, M. do C. F., & Moraes-Filho, J. P. (2017). Intestinal microbiota in digestive diseases. Arquivos de Gastroenterologia, 54, 255–262. https://doi.org/10.1590/S0004-2803.201700000-31
  • Schiffrin, E. J., Marteau, P., & Brassart, D. (2014). Intestinal microbiota in health and disease: Modern concepts. CRC Press.
  • Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009
  • Sittipo, P., Lobionda, S., Lee, Y. K., & Maynard, C. L. (2018). Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology, 56(3), 154–162. https://doi.org/10.1007/s12275-018-7548-y
  • Ullah, H., Arbab, S., Tian, Y., Liu, C., Chen, Y., Qijie, L., Khan, M. I. U., Hassan, I. U., & Li, K. (2023). The gut microbiota–brain axis in neurological disorder. Frontiers in Neuroscience, 17, 1225875. https://doi.org/10.3389/fnins.2023.1225875
  • Woting, A., & Blaut, M. (2016). The intestinal microbiota in metabolic disease. Nutrients, 8(4), 202. https://doi.org/10.3390/nu8040202
  • Yamashiro, Y. (2017). Gut microbiota in health and disease. Annals of Nutrition and Metabolism, 71(3–4), 242–246. https://doi.org/10.1159/000481627
  • Yang, Y., Feng, Z., Luo, Y., Chen, J., Zhang, Y., Liao, Y., Jiang, H., Long, Y., & Wei, B. (2025). Exercise-induced central fatigue: Biomarkers and non-medicinal interventions. Aging and Disease, 16(3), 567–583. https://doi.org/10.14336/AD.2024.0567
  • Yin, C., Ma, Z., Li, F., Duan, C., Yuan, Y., Zhu, C., Wang, L., Zhu, X., Wang, S., Gao, P., Shu, G., Zhang, H., & Jiang, Q. (2021). Hypoxanthine induces muscular ATP depletion and fatigue via UCP2. Frontiers in Physiology, 12, 647743. https://doi.org/10.3389/fphys.2021.647743
  • Yoo, J. Y., Groer, M., Dutra, S. V. O., Sarkar, A., & McSkimming, D. I. (2020). Gut microbiota and immune system interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587
  • Zhang, L., Li, H., Song, Z., Liu, Y., & Zhang, X. (2024). Dietary strategies to improve exercise performance by modulating the gut microbiota. Foods, 13(11), 1680. https://doi.org/10.3390/foods13111680

AKUT EGZERSİZ VE BAĞIRSAK MİKROBİYOTA ARASINDAKİ ETKİLEŞİM: BİBLİYOMETRİK BİR İNCELEME

Year 2025, Volume: 12 Issue: 2, 82 - 94, 20.08.2025

Abstract

Son yıllarda insan sağlığı üzerindeki belirleyici rolü giderek daha iyi anlaşılan mikrobiyota, egzersiz bilimiyle kesişen yeni ve dinamik bir araştırma alanı oluşturmaktadır. Ancak bu alan hızla gelişmesine rağmen, literatürdeki çalışmaların tematik dağılımı, öne çıkan kavramlar, etkili araştırmacılar ve kurumlar hakkında kapsamlı analizler sınırlı sayıdadır. Oysa alanın mevcut durumunu ve gelişim eğilimlerini ortaya koymak, gelecekteki araştırmaların planlanması açısından stratejik önem taşımaktadır. Bu doğrultuda, çalışmanın amacı egzersiz ve mikrobiyota ilişkisini bibliyometrik yaklaşımla inceleyerek literatürdeki eğilimleri çok boyutlu biçimde ortaya koymaktır. Araştırma, nitel yöntemlerden doküman incelemesi çerçevesinde yürütülmüş; veri toplama sürecinde yalnızca Web of Science veri tabanı kullanılmıştır. Elde edilen bibliyografik veriler (n=12) VOSviewer yazılımı ile analiz edilmiştir. Üç temel bibliyometrik analiz gerçekleştirilmiştir: (1) Anahtar kelime eşbirliği ile tematik odaklar ve eğilimler belirlenmiş; (2) Kurumsal işbirliği ağı ile öne çıkan üniversiteler ve işbirlikleri değerlendirilmiş; (3) Yazar işbirliği ağı ile bireysel araştırmacıların üretkenlik düzeyi ve etkileşimleri analiz edilmiştir. Bulgular, alandaki çalışmaların dayanıklılık egzersizleri ve biyolojik mekanizmalara yöneldiğini; işbirliklerinin ise genellikle sınırlı ve dağınık olduğunu göstermektedir. Bazı araştırmacılar ve kurumlar öne çıkmakla birlikte, alanda daha fazla uluslararası ve çok merkezli çalışmaya ihtiyaç duyulmaktadır.

References

  • Antonio, N., Andrea, T., Claudio, T., Beatrice, P., Pamela, C., Chiara, M., Gian, L. de’ A., Francesco, D. M., & Tiziana, M. (2018). Digestive disorders and intestinal microbiota. Acta Bio Medica: Atenei Parmensis, 89(Suppl 9), 47–51. https://doi.org/10.23750/abm.v89i9-S.7912
  • Cani, P. D. (2013). Gut microbiota and obesity: Lessons from the microbiome. Briefings in Functional Genomics, 12(4), 381–387. https://doi.org/10.1093/bfgp/elt014
  • Clauss, M., Gérard, P., Mosca, A., & Leclerc, M. (2021). Interplay between exercise and gut microbiome in the context of human health and performance. Frontiers in Nutrition, 8, 637010. https://doi.org/10.3389/fnut.2021.637010
  • Cook, M. D., Allen, J. M., Pence, B. D., Wallig, M. A., Gaskins, H. R., White, B. A., & Woods, J. A. (2016). Exercise and gut immune function: Evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunology & Cell Biology, 94(2), 158–163. https://doi.org/10.1038/icb.2015.108
  • Geng, Z.-H., Zhu, Y., Li, Q.-L., Zhao, C., & Zhou, P.-H. (2022). Enteric nervous system: The bridge between the gut microbiota and neurological disorders. Frontiers in Aging Neuroscience, 14, 810483. https://doi.org/10.3389/fnagi.2022.810483
  • Hawley, J. A., Forster, S. C., & Giles, E. M. (2025). Exercise, the gut microbiome and gastrointestinal diseases: Therapeutic impact and molecular mechanisms. Gastroenterology, 169(1), 48–62. https://doi.org/10.1053/j.gastro.2025.01.224
  • He, X., & Slupsky, C. M. (2014). Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial–mammalian co-metabolism. Journal of Proteome Research, 13(12), 5281–5292. https://doi.org/10.1021/pr500629t
  • Hentges, D. J. (2012). Human intestinal microflora in health and disease. Academic Press.
  • Hinchcliff, K. W., Kaneps, A. J., & Geor, R. J. (2008). Equine exercise physiology: The science of exercise in the athletic horse. Elsevier Health Sciences.
  • Huang, L., Li, T., Zhou, M., Deng, M., Zhang, L., Yi, L., Zhu, J., Zhu, X., & Mi, M. (2022). Hypoxia improves endurance performance by enhancing short chain fatty acids production via gut microbiota remodeling. Frontiers in Microbiology, 12, 820691. https://doi.org/10.3389/fmicb.2021.820691
  • Jurdana, M., & Maganja, D. B. (2023). Regular physical activity influences gut microbiota with positive health effects. In Advances in Probiotics for Health and Nutrition. IntechOpen. https://doi.org/10.5772/intechopen.110725
  • Kaur, S., Thukral, S. K., Kaur, P., & Samota, M. K. (2021). Perturbations associated with hungry gut microbiome and postbiotic perspectives to strengthen the microbiome health. Future Foods, 4, 100043. https://doi.org/10.1016/j.fufo.2021.100043
  • Kraemer, W. J., Fleck, S. J., & Deschenes, M. R. (2011). Exercise physiology: Integrating theory and application. Lippincott Williams & Wilkins.
  • Mach, N., & Fuster-Botella, D. (2017). Endurance exercise and gut microbiota: A review. Journal of Sport and Health Science, 6(2), 179–197. https://doi.org/10.1016/j.jshs.2016.05.001
  • Magrone, T., & Jirillo, E. (2013). The interaction between gut microbiota and age-related changes in immune function and inflammation. Immunity & Ageing, 10, 31. https://doi.org/10.1186/1742-4933-10-31
  • Marttinen, M., Ala-Jaakkola, R., Laitila, A., & Lehtinen, M. J. (2020). Gut microbiota, probiotics and physical performance in athletes and physically active individuals. Nutrients, 12(10), 2936. https://doi.org/10.3390/nu12102936
  • Moitinho-Silva, L., Wegener, M., May, S., Schrinner, F., Akhtar, A., Boysen, T. J., Schaeffer, E., Hansen, C., Schmidt, T., Rühlemann, M. C., Hübenthal, M., Rausch, P., Kondakci, M. T., Maetzler, W., Weidinger, S., Laudes, M., Süß, P., Schulte, D., Junker, R., … Franke, A. (2021). Short-term physical exercise impacts on the human holobiont obtained by a randomised intervention study. BMC Microbiology, 21(1), 162. https://doi.org/10.1186/s12866-021-02214-1
  • Nesci, A., Carnuccio, C., Ruggieri, V., D’Alessandro, A., Di Giorgio, A., Santoro, L., Gasbarrini, A., Santoliquido, A., & Ponziani, F. R. (2023). Gut microbiota and cardiovascular disease: Evidence on the metabolic and inflammatory background of a complex relationship. International Journal of Molecular Sciences, 24(10), 9087. https://doi.org/10.3390/ijms24109087
  • Okamoto, T., Morino, K., Ugi, S., Nakagawa, F., Lemecha, M., Ida, S., Ohashi, N., Sato, D., Fujita, Y., & Maegawa, H. (2019). Microbiome potentiates endurance exercise through intestinal acetate production. American Journal of Physiology-Endocrinology and Metabolism, 316(5), E956–E966. https://doi.org/10.1152/ajpendo.00510.2018
  • Passos, M. do C. F., & Moraes-Filho, J. P. (2017). Intestinal microbiota in digestive diseases. Arquivos de Gastroenterologia, 54, 255–262. https://doi.org/10.1590/S0004-2803.201700000-31
  • Schiffrin, E. J., Marteau, P., & Brassart, D. (2014). Intestinal microbiota in health and disease: Modern concepts. CRC Press.
  • Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904. https://doi.org/10.1152/physrev.00045.2009
  • Sittipo, P., Lobionda, S., Lee, Y. K., & Maynard, C. L. (2018). Intestinal microbiota and the immune system in metabolic diseases. Journal of Microbiology, 56(3), 154–162. https://doi.org/10.1007/s12275-018-7548-y
  • Ullah, H., Arbab, S., Tian, Y., Liu, C., Chen, Y., Qijie, L., Khan, M. I. U., Hassan, I. U., & Li, K. (2023). The gut microbiota–brain axis in neurological disorder. Frontiers in Neuroscience, 17, 1225875. https://doi.org/10.3389/fnins.2023.1225875
  • Woting, A., & Blaut, M. (2016). The intestinal microbiota in metabolic disease. Nutrients, 8(4), 202. https://doi.org/10.3390/nu8040202
  • Yamashiro, Y. (2017). Gut microbiota in health and disease. Annals of Nutrition and Metabolism, 71(3–4), 242–246. https://doi.org/10.1159/000481627
  • Yang, Y., Feng, Z., Luo, Y., Chen, J., Zhang, Y., Liao, Y., Jiang, H., Long, Y., & Wei, B. (2025). Exercise-induced central fatigue: Biomarkers and non-medicinal interventions. Aging and Disease, 16(3), 567–583. https://doi.org/10.14336/AD.2024.0567
  • Yin, C., Ma, Z., Li, F., Duan, C., Yuan, Y., Zhu, C., Wang, L., Zhu, X., Wang, S., Gao, P., Shu, G., Zhang, H., & Jiang, Q. (2021). Hypoxanthine induces muscular ATP depletion and fatigue via UCP2. Frontiers in Physiology, 12, 647743. https://doi.org/10.3389/fphys.2021.647743
  • Yoo, J. Y., Groer, M., Dutra, S. V. O., Sarkar, A., & McSkimming, D. I. (2020). Gut microbiota and immune system interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587
  • Zhang, L., Li, H., Song, Z., Liu, Y., & Zhang, X. (2024). Dietary strategies to improve exercise performance by modulating the gut microbiota. Foods, 13(11), 1680. https://doi.org/10.3390/foods13111680
There are 30 citations in total.

Details

Primary Language English
Subjects Exercise Physiology
Journal Section Hareket ve Egzersiz Bilimi
Authors

İsmail İlbak 0000-0002-3364-0990

Publication Date August 20, 2025
Submission Date August 7, 2025
Acceptance Date August 18, 2025
Published in Issue Year 2025 Volume: 12 Issue: 2

Cite

APA İlbak, İ. (2025). THE INTERACTION BETWEEN ACUTE EXERCISE AND GUT MICROBIOTA: A BIBLIOMETRIC ANALYSIS. İnönü Üniversitesi Beden Eğitimi Ve Spor Bilimleri Dergisi, 12(2), 82-94.