Research Article
BibTex RIS Cite

SİMULASYON VE TEST METODOLOJİLERİNİN YENİ EGZOZ MANIFOLDU EKİPMANI TASARLAMAK İÇİN ENTEGRASYONU

Year 2021, , 179 - 189, 31.10.2021
https://doi.org/10.47480/isibted.1025909

Abstract

Bilgisayar destekli simulasyon, motor geliştirme aşamasında egzoz manifoldu tasarımını için kullanılan etkin araçlardandır. Bununla birlikte, egzoz manifoldu tasarım doğrulaması için, zorlu çalışma koşulları altında motor dinamometre odalarında çeşitli testlerin gerçekleştirilmesi gerekir. Test süreleri, ağır ticari araç (HD) egzoz manifoldu için 2500 saate kadardır. Bu nedenle doğrulama testleri pahalı ve zaman alıcıdır. Maliyet düşürme amaçları ve daha verimli dinamometre kullanımı için bu pahalı testlerin yerini almanın alternatif yolları aranmaktadır. Bu amaçla, özel test donanımları tasarlanır ve inşa edilir. Bu çalışmadaki sistem, motorla benzer sıcaklık ve kütlesel debi aralıklarında sıcak gaz sağlayan brülör sistemini içerir. Brülör sisteminin dezavantajı, zamanla değişmeyen koşullarda çalışmasıdır. Bu nedenle, motorun titreşimli akış etkisini tam olarak kopyalamak çok zordur. Star-CCM + ve Modefrontier yazılımlarının birleştirilmesiyle, bilgisayar destekli mühendislik çalışması, motor koşulları ile brülör test hücresinde benzer manifold yüzey sıcaklığı dağılımı elde etmenin fizibilitesini değerlendirmek için gerçekleştirilir. Egzoz bacakları vasıtasıyla kütle debisini düzenleyen doğru vana açı pozisyonlarının belirlenmesi amaçlanır. Bu yenilikçi metodoloji, deney aşamasında deneme yanılma sayısını azaltır.

References

  • The authors would like to acknowledge the support and activities of Aydin Ayyildiz and Hakan Gokoglu from Ford Otosan.
  • Meda L., Shu Y. and Meda L., 2012, Exhaust System Manifold Development. SAE, 2012-01-0643.
  • Ångström H. and Fuchs L., 2009, A Comparative Study Between 1D and 3D Computational Results. SAE, 1112.
  • Annand W., 1963, Heat transfer in the cylinders of reciprocating internal combustion engines. Proc IMechE.
  • Assanis H., 1986, Development and use of a computer simulation of the turbo compounded diesel engine performance and component heat transfer studies. SAE(860329).
  • Belingiardi G. and Leonti S. 1987, Modal Analysis in the design of an automotive exhaust pipe. International Journal Vehicle Design, 475-487.
  • Benoit M., 2012, Cyclic behavior of structures under thermomechanical loadings: application to exhaust manifolds. Int. J. Fatigue, 65–74.
  • Byung Kyu K., 2013, High-temperature low cycle fatigue properties of 24Cr ferritic stainless steel for SOFC applications. Materials Science and Engineering, 81-86.
  • Cartwright, J., Selamet, A., Wade, R., Miazgowicz, K. and Sloss, C., 2015, Heat Rejection and Skin Temperatures of an Externally Cooled Exhaust Manifold. SAE, 1736.
  • Celikten B., Duman I., Harman C. and Eroglu S., 2018, Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization. SAE, 06-04.
  • Charkaluk E., Bignonnet A., Constantinescu A. and Dang Van K., 2002, Fatigue design of structures under thermomechanical loadings. Fatigue Fracture Engineering, 1119-1206.
  • Chen M., Wang Y., Wu W. and Xin, J., 2014, Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach, SAE 01-2882.
  • Demirkesen C., Colak U., Savci I. and Zeren H., 2020, Experimental and Numerical Investigation of Air Flow Motion In Cylinder of Heavy Duty Diesel Engines. Journal of Applied Fluid Mechanics, 537-547.
  • Ekstrem J., 2014, High-temperature mechanical and fatigue properties of cast alloys intended for use in exhaust manifolds. Materials Science Engineering, 78-87.
  • European Parliament and Council, 2009, Emission Performance Standards for New Passenger Cars as part of the Community's Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles. Regulation (EC) No. 443/2009.
  • Hasse C., Sohm V. and Durst B., 2010, Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach. Computers & Fluids, 25-48.
  • Heywood J.B., 1988, Internal Combustion Engine Fundamentals, McGraw-Hill Inc.
  • Ho H., 1972, Shakedown in elastic-plastic systems under dynamic loadings. J. Appl. Mech., 416–421.
  • Moeckel M., 1994, Computational Fluid Dynamic (CFD) Analysis of a Six-Cylinder Diesel Engine, SAE.
  • Rohsenow W., Hartnett J. and Cho Y., 1998, Handbook of Heat Transfer. New York, USA: McGraw-Hill Inc.
  • Savci I. and Zeren H., 2019, Deposit Testing in Exhaust Systems and Deposit Mapping Strategy. Journal of Thermal Science and Technology, 163-167.
  • Simone G., 2014, Low-Cycle Thermal Fatigue and High-Cycle Vibration Fatigue Life Estimation of a Diesel Engine Exhaust Manifold. Procedia Engineering, 105 – 112.
  • STAR-CCM+., 2019, Version 13.04.011 User Manual > Simulating Physics > Heat Transfer > Convective Heat Transfer Coefficients > Guidelines for Heat Transfer Coefficients > Specified y+ Heat Transfer Coefficient. SAE.
  • Wolff K., Schneider M. and Schernus C., 1988, Computer-aided development of exhaust system durability. Global Powertrain Congress, 179-187.
  • Yanarocak R., Ergenc A. and Duman I., 2016, Thermal Analysis of Heavy Duty Engine Exhaust Manifold Using CFD. SAE, 0648.
  • Zhien L., Wang X., Yan Z., Li X. and Xu Y. , 2014, Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial

INTEGRATION OF THE SIMULATION AND TEST METHODOLOGIES TO DESIGN NOVEL EXHAUST MANIFOLD RIG

Year 2021, , 179 - 189, 31.10.2021
https://doi.org/10.47480/isibted.1025909

Abstract

Computer Aided Engineering is an effective tool utilized to drive an exhaust manifold design by early assessment within the engine program development phase. However, in the end, for exhaust manifold design verification, various tests must be performed in engine dynamometer cells under severe operating conditions. The test running durations are up to 2500 hours for the heavy-duty (HD) exhaust manifold. Therefore, the validation tests are expensive and time-consuming. Alternative ways are sought to replace these expensive tests for cost reduction purposes and more efficient dynamometer cells. Thus, the custom test rig is designed and built. This system contains the burner system supplying hot gas at a similar temperature and mass flow ranges with the engine. The drawback of the burner system is, it runs in steady-state mode, so very challenging to replicate the engine's pulsating flow effect exactly. Therefore, with the coupling of Star-CCM+ and Modefrontier, the CAE study is carried out to assess the feasibility of obtaining similar manifold skin temperature distribution in the burner test cell with engine conditions. It is aimed to determine the correct valve opening positions regulating the mass flow rate through the runners. This innovative methodology reduces the trial-and-error count in the experiment phase.

References

  • The authors would like to acknowledge the support and activities of Aydin Ayyildiz and Hakan Gokoglu from Ford Otosan.
  • Meda L., Shu Y. and Meda L., 2012, Exhaust System Manifold Development. SAE, 2012-01-0643.
  • Ångström H. and Fuchs L., 2009, A Comparative Study Between 1D and 3D Computational Results. SAE, 1112.
  • Annand W., 1963, Heat transfer in the cylinders of reciprocating internal combustion engines. Proc IMechE.
  • Assanis H., 1986, Development and use of a computer simulation of the turbo compounded diesel engine performance and component heat transfer studies. SAE(860329).
  • Belingiardi G. and Leonti S. 1987, Modal Analysis in the design of an automotive exhaust pipe. International Journal Vehicle Design, 475-487.
  • Benoit M., 2012, Cyclic behavior of structures under thermomechanical loadings: application to exhaust manifolds. Int. J. Fatigue, 65–74.
  • Byung Kyu K., 2013, High-temperature low cycle fatigue properties of 24Cr ferritic stainless steel for SOFC applications. Materials Science and Engineering, 81-86.
  • Cartwright, J., Selamet, A., Wade, R., Miazgowicz, K. and Sloss, C., 2015, Heat Rejection and Skin Temperatures of an Externally Cooled Exhaust Manifold. SAE, 1736.
  • Celikten B., Duman I., Harman C. and Eroglu S., 2018, Exhaust Manifold Thermal Assessment with Ambient Heat Transfer Coefficient Optimization. SAE, 06-04.
  • Charkaluk E., Bignonnet A., Constantinescu A. and Dang Van K., 2002, Fatigue design of structures under thermomechanical loadings. Fatigue Fracture Engineering, 1119-1206.
  • Chen M., Wang Y., Wu W. and Xin, J., 2014, Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach, SAE 01-2882.
  • Demirkesen C., Colak U., Savci I. and Zeren H., 2020, Experimental and Numerical Investigation of Air Flow Motion In Cylinder of Heavy Duty Diesel Engines. Journal of Applied Fluid Mechanics, 537-547.
  • Ekstrem J., 2014, High-temperature mechanical and fatigue properties of cast alloys intended for use in exhaust manifolds. Materials Science Engineering, 78-87.
  • European Parliament and Council, 2009, Emission Performance Standards for New Passenger Cars as part of the Community's Integrated Approach to Reduce CO2 Emissions from Light-Duty Vehicles. Regulation (EC) No. 443/2009.
  • Hasse C., Sohm V. and Durst B., 2010, Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach. Computers & Fluids, 25-48.
  • Heywood J.B., 1988, Internal Combustion Engine Fundamentals, McGraw-Hill Inc.
  • Ho H., 1972, Shakedown in elastic-plastic systems under dynamic loadings. J. Appl. Mech., 416–421.
  • Moeckel M., 1994, Computational Fluid Dynamic (CFD) Analysis of a Six-Cylinder Diesel Engine, SAE.
  • Rohsenow W., Hartnett J. and Cho Y., 1998, Handbook of Heat Transfer. New York, USA: McGraw-Hill Inc.
  • Savci I. and Zeren H., 2019, Deposit Testing in Exhaust Systems and Deposit Mapping Strategy. Journal of Thermal Science and Technology, 163-167.
  • Simone G., 2014, Low-Cycle Thermal Fatigue and High-Cycle Vibration Fatigue Life Estimation of a Diesel Engine Exhaust Manifold. Procedia Engineering, 105 – 112.
  • STAR-CCM+., 2019, Version 13.04.011 User Manual > Simulating Physics > Heat Transfer > Convective Heat Transfer Coefficients > Guidelines for Heat Transfer Coefficients > Specified y+ Heat Transfer Coefficient. SAE.
  • Wolff K., Schneider M. and Schernus C., 1988, Computer-aided development of exhaust system durability. Global Powertrain Congress, 179-187.
  • Yanarocak R., Ergenc A. and Duman I., 2016, Thermal Analysis of Heavy Duty Engine Exhaust Manifold Using CFD. SAE, 0648.
  • Zhien L., Wang X., Yan Z., Li X. and Xu Y. , 2014, Study on the Unsteady Heat Transfer of Engine Exhaust Manifold Based on the Analysis Method of Serial
There are 26 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Ismail Hakki Savcı This is me 0000-0002-7923-6061

Baran Celıkten This is me 0000-0002-3877-5237

Sinan Eroglu This is me 0000-0002-7318-2250

Publication Date October 31, 2021
Published in Issue Year 2021

Cite

APA Savcı, I. H., Celıkten, B., & Eroglu, S. (2021). INTEGRATION OF THE SIMULATION AND TEST METHODOLOGIES TO DESIGN NOVEL EXHAUST MANIFOLD RIG. Isı Bilimi Ve Tekniği Dergisi, 41(2), 179-189. https://doi.org/10.47480/isibted.1025909