Research Article
BibTex RIS Cite

HIZLI VE ÖNGÖRÜLÜ ISI BORUSU TASARIM VE ANALİZ ARACI: H-PAT

Year 2022, , 141 - 156, 30.04.2022
https://doi.org/10.47480/isibted.1107492

Abstract

Isı borularının termal performansının değerlendirilmesi için, literatürde basit kılcal limit analizlerinden kapsamlı 3D modellere kadar geniş bir modelleme yelpazesi mevcuttur. Basit modeller, ısı transferi ve çalışma sıcaklıklarının daha düşük doğrulukla tahmin ederken, kapsamlı modeller hesaplama açısından yük getirmektedir. Bu çalışmada, geleneksel ısı borularının hızlı fakat yeterince doğru bir şekilde modellenmesi için evrensel bir hesaplama yöntemi geliştirilmiş ve bu yönteme dayalı olarak Isı Borusu Analizi Araç Aracı, kısaca H-PAT olarak adlandırılan bir analiz aracı sunulmuştur. Bir tanı aracı olarak H-PAT, kuruma başlangıcına kadar değişen ısı girdileri altında bir ısı borusundan sıvı akışını ve ısı transferini tahmin edebilir. Faz değişim hızlarının ilk tahmini sırasında, hesaplama alanı için sonlu eleman/hacim tabanlı yöntemler kullanmak yerine, ısı borusu boyunca sıvının kütle akış hızı için uygun bir model belirlenerek belirli ince film faz değişim modellerinin çözümlerinden kaçınılır. Modüler bir yapının yardımıyla, H-PAT, ortalama sıvı hızı ve buna karşılık gelen basınç düşüşü için bir formülasyon sunulabildiği sürece farklı fitil yapılarına sahip ısı borularını simüle edebilir. H-PAT ayrıca değişken kesitli ısı borularını, yerçekiminin pozitif/negatif yönde etki ettiği koşullarını da analiz etme yeteneğine sahiptir ve ısı girdisine duyarlı buhar basıncı ile evaporatör, kondenser ve adyabatik bölgelerde sıcaklığa bağlı termo-fiziksel özellikleri kullanır. Buna ek olarak, H-PAT hesaplamayı çok hızlı gerçekleştirir ve bu da onu termal yönetim alanındaki araştırmacılar ve tasarım mühendisleri için mükemmel bir tasarım aracı haline getirir.

References

  • Aghvami M. and Faghri A., 2011, Analysis of flat heat pipes with various heating and cooling configurations. Appl. Therm. Eng., 31(14-15):2645-2655.
  • Akdag O., Akkus Y., and Dursunkaya Z., 2019, The effect of disjoining pressure on the shape of condensing films in a fin-groove corner. Int. J. Therm. Sci., 142:357-365.
  • Akdag O., Akkus Y., and Dursunkaya Z., 2020, On the effect of structural forces on a condensing film profile near a fin-groove corner. Int. Commun. Heat Mass, 116:104686.
  • Akkus Y. and Dursunkaya Z., 2016, A new approach to thin film evaporation modeling. Int. J. Heat Mass Tran., 101:742-748.
  • Akkus Y., Gurer A. T., and Bellur K., 2021, Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup. Nanosc. Microsc. Therm., 25(1):25-45.
  • Akkus Y., Nguyen C. T., Celebi A. T., and Beskok A., 2019, A first look at the performance of nano-grooved heat pipes. Int. J. Heat Mass Tran., 132:280-287.
  • Akkus Y., Tarman H. I., Çetin B., and Dursunkaya Z., 2017, Two-dimensional computational modeling of thin film evaporation. Int. J. Therm. Sci., 121:237-248.
  • Alijani H., Cetin B., Akkus Y., and Dursunkaya Z., 2018, Effect of design and operating parameters on the thermal performance of flat grooved heat pipes. Appl. Therm. Eng.,132:174-187.
  • Alijani H., Cetin B., Akkus Y., and Dursunkaya Z., 2019, Experimental thermal performance characterization of flat grooved heat pipes. Heat Transfer Eng., 40(9-10):784-793.
  • Anand A. R., Vedamurthy A. J., Chikkala S. R., Kumar S., Kumar D., and Gupta P. P., 2008, Analytical and experimental investigations on axially grooved aluminum-ethane heat pipe. Heat Transfer Eng., 29(4):410-416.
  • Atay A., Sarıaslan B., Kuşcu Y. F., Saygan S., Akkus Y., Gürer A. T., Çetin B., and Dursunkaya Z., 2019, Performance assessment of commercial heat pipes with sintered and grooved wicks under natural convection. J. Therm. Sci. Tech., 39(2):101-110.
  • Babin B. R., Peterson G. P., and Wu D., 1990, Steady-state modeling and testing of a micro heat pipe. J. Heat Transf., 112:595-601.
  • Catton I. and Yao Q., 2016, A designer fluid for aluminum phase change devices, Volume III Performance enhancement in copper heat pipes. Technical report, University of California, Los Angeles, United States.
  • Chang F. L. and Hung Y. M., 2014, The coupled effects of working fluid and solid wall on thermal performance of micro heat pipes. Int. J. Heat Mass Tran., 73:76-87.
  • Chen Y., Zhang C., Shi M., Wu J., and Peterson G. P., 2009, Study on flow and heat transfer characteristics of heat pipe with axial “ω”-shaped microgrooves. Int. J. Heat Mass Tran., 52(3-4):636-643.
  • Chi S. W., 1976, Heat Pipe Theory and Practice: A Sourcebook. McGraw-Hill-Hemisphere Series in Fluids and Thermal Engineering. Hemisphere Publishing Corporation.
  • Desai A. N., Singh V. K., and Patel R. N., 2019, Effect of geometrical parameters on the thermal performance of ammonia-based trapezoidal-shaped axial grooved heat pipe. J. Heat Transf., 141(12).
  • Do K. H., Kim S. J., and Garimella S. V., 2008, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int. J. Heat Mass Tran.,51(19-20):4637-4650.
  • Elnaggar M. H. A., Abdullah M. Z., and Mujeebu M. A., 2012, Characterization of working fluid in vertically mounted finned u-shape twin heat pipe for electronic cooling. Energy Convers. Manage., 62:31-39.
  • Faghri A., 1989, Performance characteristics of a concentric annular heat pipe: Part 2-vapor flow analysis. J. Heat Transf., 111(4).
  • Faghri A., 1995, Heat Pipe Science and Technology. Global Digital Press.
  • Ferrandi C., Iorizzo F., Mameli M., Zinna S., and Marengo M., 2013, Lumped parameter model of sintered heat pipe: Transient numerical analysis and validation. Appl. Therm. Eng., 50(1):1280-1290. Grover G. M., Cotter T. P., and Erickson G. F., 1964, Structures of very high thermal conductance. J. Appl. Phys., 35(6):1990-1991.
  • Hoa C., Demolder B., and Alexandre A., 2003, Roadmap for developing heat pipes for Alcatel space's satellites. Appl. Therm. Eng., 23(9):1099-1108.
  • Hopkins R., Faghri A., and Khrustalev D., 1999, Flat miniature heat pipes with micro capillary grooves. J. Heat Transf., 121(1):102-109.
  • Huang Y. and Chen Q., 2017, A numerical model for transient simulation of porous wicked heat pipes by lattice boltzmann method. Int. J. Heat Mass Tran., 105:270-278.
  • Hung Y. M. and Tio K. K., 2010, Analysis of microheat pipes with axial conduction in the solid wall. J. Heat Transf., 132(7).
  • Hung Y. M. and Tio K. K., 2012, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction. Int. Commun. Heat Mass, 39(8):1146-1153.
  • Jafari D., Wits W. W., and Geurts B. J., 2020, Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications. Appl. Therm. Eng., 168:114890.
  • Jiang L., Ling J., Jiang L., Tang Y., Li Y., Zhou W., and Gao J., 2014, Thermal performance of a novel porous crack composite wick heat pipe. Energ. Convers. Manage., 81:10-18.
  • Khalili M. and Shafii M. B., 2016, Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe. Appl. Therm. Eng., 94:59-75.
  • Khrustalev D. and Faghri A., 1994, Thermal analysis of a micro heat pipe. J. Heat Transf., 116(1):189-198.
  • Khrustalev D. and Faghri A., 1995, Thermal characteristics of conventional and flat miniature axially grooved heat pipes. J. Heat Transf., 117(4):1048-1054.
  • Kim S. J., Seo J. K., and Do K. H., 2003, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. Int. J. Heat Mass Tran., 46(11):2051-2063.
  • Kolliyil J., Yarramsetty N., and Balaji C., 2020, Numerical modeling of a wicked heat pipe using lumped parameter network incorporating the Marangoni effect. Heat Transfer Eng., :1-15.
  • Lefèvre F., Rullière R., Lips S., and Bonjour J., 2010, Confocal microscopy for capillary film measurements in a flat plate heat pipe. J. Heat Transf., 132(3). Lefèvre F., Rullière R., Pandraud G., and Lallemand M., 2008, Prediction of the temperature field in flat plate heat pipes with micro-grooves–experimental validation. Int. J. Heat Mass Tran., 51(15-16):4083-4094.
  • Li Y., He J., He H., Yan Y., Zeng Z., and Li B., 2015, Investigation of ultra-thin flattened heat pipes with sintered wick structure. Appl. Therm. Eng., 86:106-118.
  • Lips S., Lefèvre F., and Bonjour J., 2011, Physical mechanisms involved in grooved flat heat pipes: experimental and numerical analyses. Int. J. Therm. Sci., 50(7):1243-1252.
  • Longtin J. P., Badran B., and Gerner F. M., 1994, A one-dimensional model of a micro heat pipe during steady-state operation. J. Heat Transf., 116:709-715.
  • Nilson R. H., Tchikanda S. W., Griffiths S. K., and Martinez M. J., 2006, Steady evaporating flow in rectangular microchannels. Int. J. Heat Mass Tran., 49:1603-1618.
  • Odabaşı G., 2014, Modeling of multidimensional heat transfer in a rectangular grooved heat pipe. Ph.D. Thesis, Middle East Technical University.
  • Ömür C., Uygur A. B., Horuz İ., Işık H. G., Ayan S., and Konar M., 2018, Incorporation of manufacturing constraints into an algorithm for the determination of maximum heat transport capacity of extruded axially grooved heat pipes. Int. J. Therm. Sci., 123:181-190.
  • Peterson G. P., 1994, An Introduction to Heat Pipes: Modeling, Testing, and Applications. Wiley.
  • Peterson G. P., Duncan A. B., and Weichold M. H., 1993, Experimental investigation of micro heat pipes fabricated in silicon wafers. J. Heat Transf., 115(3):751-756.
  • Reay D., McGlen R., and Kew P., 2013, Heat Pipes: Theory, Design and Applications. Butterworth-Heinemann.
  • Rullière R., Lefèvre F., and Lallemand M., 2007, Prediction of the maximum heat transfer capability of two-phase heat spreaders–experimental validation. Int. J. Heat Mass Tran., 50(7-8):1255-1262.
  • Schneider G. E. and DeVos R., 1980, Non-dimensional analysis for the heat transport capability of axially grooved heat pipes including liquid/vapor interaction. In AIAA, page 214.
  • Schrage R.W., 1953, A Theoretical Study of Interphase Mass Transfer. Columbia University Press, New York.
  • Setchi A., Chen Y., Yu J., and Wang H., 2019, Structural effects in partially-wetting thin evaporating liquid films near the contact line. Int. J. Heat Mass Tran., 132:420-430.
  • Singh M., 2020, Capillarity enhancement of micro heat pipes using grooves with variable apex angle. Int. J. Therm. Sci., 150:106239.
  • Sujanani M. and Wayner P.C., 1991, Microcomputer-enhanced optical investigation of transport processes with phase change in near-equilibrium thin liquid films. J. Colloid Interf. Sci., 2:472-488.
  • Suman B., De S., and DasGupta S., 2005, A model of the capillary limit of a micro heat pipe and prediction of the dry-out length. Int. J. Heat Fluid Fl., 26(3):495-505.
  • Tio K. K. and Hung Y. M., 2015, Analysis of overloaded micro heat pipes: Effects of solid thermal conductivity. Int. J. Heat Mass Tran., 81:737-749.
  • Vafai K., 1984, Convective flow and heat transfer in variable-porosity media. J. Fluid Mech., 147:233-259. Vafai K. and Tien C. L., 1981, Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Tran., 24(2):195-203.
  • Vafai K. and Wang W., 1992 Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe. Int. J. Heat Mass Tran., 35(9):2087-2099.
  • Zhu N. and Vafai K., 1999, Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-darcian transport-a closed form solution. Int. J. Heat Mass Tran.,42(18):3405-3418.
  • Zhu N. and Vafai K., 1996, The effects of liquid-vapor coupling and non-Darcian transport on asymmetrical disk-shaped heat pipes. Int. J. Heat Mass Tran., 39(10):2095-2113.

FAST AND PREDICTIVE HEAT PIPE DESIGN AND ANALYSIS TOOLBOX: H-PAT

Year 2022, , 141 - 156, 30.04.2022
https://doi.org/10.47480/isibted.1107492

Abstract

For the assessment of the thermal performance of heat pipes, a wide range of modeling is available in the literature, ranging from simple capillary limit analyses to comprehensive 3D models. While simplistic models may result in less accurate predictions of heat transfer and operating temperatures, comprehensive models may be computationally expensive. In this study, a universal computational framework is developed for a fast but sufficiently accurate modeling of traditional heat pipes, and an analysis tool based on this framework, named Heat Pipe Analysis Toolbox, in short H-PAT is presented. As a diagnostic tool, H-PAT can predict the fluid flow and heat transfer from a heat pipe under varying heat inputs up to the onset of dryout. During the initial estimation of phase change rates, the solutions of particular thin film phase change models are avoided by specifying an appropriate pattern for the mass flow rate of the liquid along the heat pipe rather than using finite element/volume based methods for the computational domain. With the help of a modular structure, H-PAT can simulate heat pipes with different wick structures as long as an expression for the average liquid velocity and corresponding pressure drop can be introduced. H-PAT is also capable of analyzing heat pipes with variable cross-sections, favorable/unfavorable gravity conditions and utilizes temperature dependent thermo-physical properties at evaporator, condenser and adiabatic regions together with heat input sensitive vapor pressure. In addition, H-PAT performs the computation very fast which also makes it a perfect design tool for researchers and design engineers in the field of thermal management.

References

  • Aghvami M. and Faghri A., 2011, Analysis of flat heat pipes with various heating and cooling configurations. Appl. Therm. Eng., 31(14-15):2645-2655.
  • Akdag O., Akkus Y., and Dursunkaya Z., 2019, The effect of disjoining pressure on the shape of condensing films in a fin-groove corner. Int. J. Therm. Sci., 142:357-365.
  • Akdag O., Akkus Y., and Dursunkaya Z., 2020, On the effect of structural forces on a condensing film profile near a fin-groove corner. Int. Commun. Heat Mass, 116:104686.
  • Akkus Y. and Dursunkaya Z., 2016, A new approach to thin film evaporation modeling. Int. J. Heat Mass Tran., 101:742-748.
  • Akkus Y., Gurer A. T., and Bellur K., 2021, Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup. Nanosc. Microsc. Therm., 25(1):25-45.
  • Akkus Y., Nguyen C. T., Celebi A. T., and Beskok A., 2019, A first look at the performance of nano-grooved heat pipes. Int. J. Heat Mass Tran., 132:280-287.
  • Akkus Y., Tarman H. I., Çetin B., and Dursunkaya Z., 2017, Two-dimensional computational modeling of thin film evaporation. Int. J. Therm. Sci., 121:237-248.
  • Alijani H., Cetin B., Akkus Y., and Dursunkaya Z., 2018, Effect of design and operating parameters on the thermal performance of flat grooved heat pipes. Appl. Therm. Eng.,132:174-187.
  • Alijani H., Cetin B., Akkus Y., and Dursunkaya Z., 2019, Experimental thermal performance characterization of flat grooved heat pipes. Heat Transfer Eng., 40(9-10):784-793.
  • Anand A. R., Vedamurthy A. J., Chikkala S. R., Kumar S., Kumar D., and Gupta P. P., 2008, Analytical and experimental investigations on axially grooved aluminum-ethane heat pipe. Heat Transfer Eng., 29(4):410-416.
  • Atay A., Sarıaslan B., Kuşcu Y. F., Saygan S., Akkus Y., Gürer A. T., Çetin B., and Dursunkaya Z., 2019, Performance assessment of commercial heat pipes with sintered and grooved wicks under natural convection. J. Therm. Sci. Tech., 39(2):101-110.
  • Babin B. R., Peterson G. P., and Wu D., 1990, Steady-state modeling and testing of a micro heat pipe. J. Heat Transf., 112:595-601.
  • Catton I. and Yao Q., 2016, A designer fluid for aluminum phase change devices, Volume III Performance enhancement in copper heat pipes. Technical report, University of California, Los Angeles, United States.
  • Chang F. L. and Hung Y. M., 2014, The coupled effects of working fluid and solid wall on thermal performance of micro heat pipes. Int. J. Heat Mass Tran., 73:76-87.
  • Chen Y., Zhang C., Shi M., Wu J., and Peterson G. P., 2009, Study on flow and heat transfer characteristics of heat pipe with axial “ω”-shaped microgrooves. Int. J. Heat Mass Tran., 52(3-4):636-643.
  • Chi S. W., 1976, Heat Pipe Theory and Practice: A Sourcebook. McGraw-Hill-Hemisphere Series in Fluids and Thermal Engineering. Hemisphere Publishing Corporation.
  • Desai A. N., Singh V. K., and Patel R. N., 2019, Effect of geometrical parameters on the thermal performance of ammonia-based trapezoidal-shaped axial grooved heat pipe. J. Heat Transf., 141(12).
  • Do K. H., Kim S. J., and Garimella S. V., 2008, A mathematical model for analyzing the thermal characteristics of a flat micro heat pipe with a grooved wick. Int. J. Heat Mass Tran.,51(19-20):4637-4650.
  • Elnaggar M. H. A., Abdullah M. Z., and Mujeebu M. A., 2012, Characterization of working fluid in vertically mounted finned u-shape twin heat pipe for electronic cooling. Energy Convers. Manage., 62:31-39.
  • Faghri A., 1989, Performance characteristics of a concentric annular heat pipe: Part 2-vapor flow analysis. J. Heat Transf., 111(4).
  • Faghri A., 1995, Heat Pipe Science and Technology. Global Digital Press.
  • Ferrandi C., Iorizzo F., Mameli M., Zinna S., and Marengo M., 2013, Lumped parameter model of sintered heat pipe: Transient numerical analysis and validation. Appl. Therm. Eng., 50(1):1280-1290. Grover G. M., Cotter T. P., and Erickson G. F., 1964, Structures of very high thermal conductance. J. Appl. Phys., 35(6):1990-1991.
  • Hoa C., Demolder B., and Alexandre A., 2003, Roadmap for developing heat pipes for Alcatel space's satellites. Appl. Therm. Eng., 23(9):1099-1108.
  • Hopkins R., Faghri A., and Khrustalev D., 1999, Flat miniature heat pipes with micro capillary grooves. J. Heat Transf., 121(1):102-109.
  • Huang Y. and Chen Q., 2017, A numerical model for transient simulation of porous wicked heat pipes by lattice boltzmann method. Int. J. Heat Mass Tran., 105:270-278.
  • Hung Y. M. and Tio K. K., 2010, Analysis of microheat pipes with axial conduction in the solid wall. J. Heat Transf., 132(7).
  • Hung Y. M. and Tio K. K., 2012, Thermal analysis of optimally designed inclined micro heat pipes with axial solid wall conduction. Int. Commun. Heat Mass, 39(8):1146-1153.
  • Jafari D., Wits W. W., and Geurts B. J., 2020, Phase change heat transfer characteristics of an additively manufactured wick for heat pipe applications. Appl. Therm. Eng., 168:114890.
  • Jiang L., Ling J., Jiang L., Tang Y., Li Y., Zhou W., and Gao J., 2014, Thermal performance of a novel porous crack composite wick heat pipe. Energ. Convers. Manage., 81:10-18.
  • Khalili M. and Shafii M. B., 2016, Experimental and numerical investigation of the thermal performance of a novel sintered-wick heat pipe. Appl. Therm. Eng., 94:59-75.
  • Khrustalev D. and Faghri A., 1994, Thermal analysis of a micro heat pipe. J. Heat Transf., 116(1):189-198.
  • Khrustalev D. and Faghri A., 1995, Thermal characteristics of conventional and flat miniature axially grooved heat pipes. J. Heat Transf., 117(4):1048-1054.
  • Kim S. J., Seo J. K., and Do K. H., 2003, Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure. Int. J. Heat Mass Tran., 46(11):2051-2063.
  • Kolliyil J., Yarramsetty N., and Balaji C., 2020, Numerical modeling of a wicked heat pipe using lumped parameter network incorporating the Marangoni effect. Heat Transfer Eng., :1-15.
  • Lefèvre F., Rullière R., Lips S., and Bonjour J., 2010, Confocal microscopy for capillary film measurements in a flat plate heat pipe. J. Heat Transf., 132(3). Lefèvre F., Rullière R., Pandraud G., and Lallemand M., 2008, Prediction of the temperature field in flat plate heat pipes with micro-grooves–experimental validation. Int. J. Heat Mass Tran., 51(15-16):4083-4094.
  • Li Y., He J., He H., Yan Y., Zeng Z., and Li B., 2015, Investigation of ultra-thin flattened heat pipes with sintered wick structure. Appl. Therm. Eng., 86:106-118.
  • Lips S., Lefèvre F., and Bonjour J., 2011, Physical mechanisms involved in grooved flat heat pipes: experimental and numerical analyses. Int. J. Therm. Sci., 50(7):1243-1252.
  • Longtin J. P., Badran B., and Gerner F. M., 1994, A one-dimensional model of a micro heat pipe during steady-state operation. J. Heat Transf., 116:709-715.
  • Nilson R. H., Tchikanda S. W., Griffiths S. K., and Martinez M. J., 2006, Steady evaporating flow in rectangular microchannels. Int. J. Heat Mass Tran., 49:1603-1618.
  • Odabaşı G., 2014, Modeling of multidimensional heat transfer in a rectangular grooved heat pipe. Ph.D. Thesis, Middle East Technical University.
  • Ömür C., Uygur A. B., Horuz İ., Işık H. G., Ayan S., and Konar M., 2018, Incorporation of manufacturing constraints into an algorithm for the determination of maximum heat transport capacity of extruded axially grooved heat pipes. Int. J. Therm. Sci., 123:181-190.
  • Peterson G. P., 1994, An Introduction to Heat Pipes: Modeling, Testing, and Applications. Wiley.
  • Peterson G. P., Duncan A. B., and Weichold M. H., 1993, Experimental investigation of micro heat pipes fabricated in silicon wafers. J. Heat Transf., 115(3):751-756.
  • Reay D., McGlen R., and Kew P., 2013, Heat Pipes: Theory, Design and Applications. Butterworth-Heinemann.
  • Rullière R., Lefèvre F., and Lallemand M., 2007, Prediction of the maximum heat transfer capability of two-phase heat spreaders–experimental validation. Int. J. Heat Mass Tran., 50(7-8):1255-1262.
  • Schneider G. E. and DeVos R., 1980, Non-dimensional analysis for the heat transport capability of axially grooved heat pipes including liquid/vapor interaction. In AIAA, page 214.
  • Schrage R.W., 1953, A Theoretical Study of Interphase Mass Transfer. Columbia University Press, New York.
  • Setchi A., Chen Y., Yu J., and Wang H., 2019, Structural effects in partially-wetting thin evaporating liquid films near the contact line. Int. J. Heat Mass Tran., 132:420-430.
  • Singh M., 2020, Capillarity enhancement of micro heat pipes using grooves with variable apex angle. Int. J. Therm. Sci., 150:106239.
  • Sujanani M. and Wayner P.C., 1991, Microcomputer-enhanced optical investigation of transport processes with phase change in near-equilibrium thin liquid films. J. Colloid Interf. Sci., 2:472-488.
  • Suman B., De S., and DasGupta S., 2005, A model of the capillary limit of a micro heat pipe and prediction of the dry-out length. Int. J. Heat Fluid Fl., 26(3):495-505.
  • Tio K. K. and Hung Y. M., 2015, Analysis of overloaded micro heat pipes: Effects of solid thermal conductivity. Int. J. Heat Mass Tran., 81:737-749.
  • Vafai K., 1984, Convective flow and heat transfer in variable-porosity media. J. Fluid Mech., 147:233-259. Vafai K. and Tien C. L., 1981, Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Tran., 24(2):195-203.
  • Vafai K. and Wang W., 1992 Analysis of flow and heat transfer characteristics of an asymmetrical flat plate heat pipe. Int. J. Heat Mass Tran., 35(9):2087-2099.
  • Zhu N. and Vafai K., 1999, Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-darcian transport-a closed form solution. Int. J. Heat Mass Tran.,42(18):3405-3418.
  • Zhu N. and Vafai K., 1996, The effects of liquid-vapor coupling and non-Darcian transport on asymmetrical disk-shaped heat pipes. Int. J. Heat Mass Tran., 39(10):2095-2113.
There are 56 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Samet Saygan This is me 0000-0002-8392-6292

Yiğit Akkuş This is me 0000-0001-8978-3934

Zafer Dursunkaya This is me 0000-0003-3711-0361

Barbaros Çetin This is me 0000-0001-9824-4000

Publication Date April 30, 2022
Published in Issue Year 2022

Cite

APA Saygan, S., Akkuş, Y., Dursunkaya, Z., Çetin, B. (2022). FAST AND PREDICTIVE HEAT PIPE DESIGN AND ANALYSIS TOOLBOX: H-PAT. Isı Bilimi Ve Tekniği Dergisi, 42(1), 141-156. https://doi.org/10.47480/isibted.1107492