Research Article
BibTex RIS Cite

CAM YÜNÜ ATIĞININ ISIL YALITKAN OLARAK YENİDEN PROSES EDİLMESİNİN KOŞULLARININ BULUNMASI

Year 2022, , 245 - 256, 31.10.2022
https://doi.org/10.47480/isibted.1195019

Abstract

Bu çalışma otomotiv endüstrisinde kullanılan cam yünü kompozit levhadan elde edilen cam yünü atığının değer katma sürecini bulmayı hedeflemektedir. Atık, bir yalıtkan olması ve yüksek ısıl direnç özelliklerine sahip yeni malzemeler oluşturmak için kullanılan sıcak pres şekillendirme için uygun koşulların belirlenmesi amacıyla tekrar işlenmiştir. İlk olarak orijinal tahtanın özellikleri; ısıl direnç (R) ve gürültü emilim katsayıları (NRC) ölçülmüş ve sırasıyla ortalama 0,9055 m2K/W ve 0,3955 olarak bulunmuştur. Tekrar işleme koşulları, yoğunluk, kalınlık, basınç, sıcaklık ve yüzey pürüzlülüğü olmak üzere 5 adet kontrol faktörüne ve yüksek ve alçak olmak üzere 2 adet seviyeye göre değişmektedir. Her koşul için üç tekrarlama işlemi gerçekleştirilmiştir. Tasarım analizi, 25 deneyden oluşarak, tam faktöriyeldir ve özelliklere ilişkin ana ve etkileşim faktörlerini bulmak için Varyans Analizi (ANOVA) kullanılmıştır. α anlamlılık düzeyi 0,05 olan sonuçlardan, ısıl direncin yüksek değerlerine sebebiyet veren ana faktörlerin kalınlık ve yoğunluk olduğu bulunmuştur. Bunun sonucunda hem yeni pürüzlü hem de pürüzsüz pedler için sıcak pres işlemi uygun koşullarının 25 mm kalınlık ve 96 kg/m3 yoğunluk olduğu açığa çıkmıştır. Yeni yalıtkanların R değerleri 0,88 – 0,98 m2K/W arasında olmaktadır ve ayrıca yüksek NRC değerleri de 0,46 – 0,49 arasında olacak şekilde verilmiştir. Bu bulgular, iç mekanlarda ve farklı bina tiplerinde duvar tasarımı, duvar dekorasyonları ve ısı kalkanları için kullanılabilir.

References

  • Ayuttaya P., 2007, Design and Analysis of Experiments, TOP Publishing Company, Bangkok, Thailand.
  • Choowonglert M. and Takkanon P., 2015, Sound Absorbing Sheets from Used Paper in the Office, Proc. of 53th Kasetsart University Annual Conference, Bangkok, 625-631.
  • Cowan J., 1994, Handbook of Environmental Acoustics, Van Nostrand Reinhold, New York, USA.
  • Homaswin K., Sangsupata S. and Intrachooto S., 2007, Para-Rubber and Coconut Fiber Integrated Acoustic Panels, Proc. of 45th Kasetsart University Annual Conference, Bangkok, 235-244.
  • Jeon C., Lee J., Chung H., Kim J. and Park J., 2017, A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent, Advance in Meterials Science and Engineering, 2017(3938965), 1-6.
  • Narakaew P. and Narakaew S., 2015, The Efficiency of the Wall for Noise and Smell Adsorptions from Rice Straw Blended with Corncob Based Activated Carbon, Research Report, Lampang Rajabhat University, Lampang, Thailand.
  • Owens CorningTM, 2004, Noise Control Design Guide, United Artists Corporate, Ohio, USA.
  • Pakunworakij T., Puthipiroj P., Oonjittichai W. and Tisavipat P., 2006, Thermal Resistance Efficiency of Building Insulation Material from Agricultural Waste, Journal of Architectural/Planning Research and Studies, 4, 3-13.
  • Wajima T. and Matsuka S., 2019, A New Recycling Process of Waste Glass Wool Using Pyrolysis with Sodium Hydroxide, International Journal of Chemical Engineering and Applications, 10(3), 75-79.
  • Yodkaew R., Sangsupata S. and Intrachooto S., 2007, Sound Absorption of an Interior Ceiling Material from Chaff, Proc. of 44th Kasetsart University Annual Conference, Bangkok, 217-225.
  • Zhao C., Liu Y., Ren S. and Zhang Y., 2018, Life Cycle Assessment of Typical Glass Wool Production in China, Materials Science Forum, 913, 998-1003.

FINDING CONDITIONS IN REPROCESSING OF GLASS WOOL WASTE AS A HEAT INSULATOR

Year 2022, , 245 - 256, 31.10.2022
https://doi.org/10.47480/isibted.1195019

Abstract

This research aimed to find the process of value adding for glass wool waste from the glass wool composite board used in the vehicle industry. The waste was reprocessed to be an insulator and to determine the suitable conditions for hot-press forming to create new materials having high thermal resistant properties. Firstly, the properties of the original board; the thermal resistances (R) and the noise absorption coefficients (NRC), were measured and were found averages of 0.9055 m2K/W and 0.3955, respectively. The reprocessing conditions were varied by 2 levels; high and low, of 5 control factors; density, thickness, pressure, temperature, and surface roughness. Three repeating processes for each condition were performed. The Design of Experiment (DoE) was the full factorials; 25 experiments, by using the Analysis of Variance (ANOVA) to find main and interaction factors relating to the properties. From the ANOVA results with the α level of significance at 0.05, it was found that the main factors responding to the high values of the thermal resistance were the thickness and density. This resulted in the suitable conditions for the hot-press process of both the new smooth and rough pads with a density of 96 kg/m3 and a thickness of 25 mm. The R values of the new insulators were in between 0.88 – 0.98 m2K/W and, additionally, the high NRC values were also provided in between 0.46 – 0.49. These findings could be applied for wall designing, wall decorations and heat shields for indoor rooms and different types of buildings.

References

  • Ayuttaya P., 2007, Design and Analysis of Experiments, TOP Publishing Company, Bangkok, Thailand.
  • Choowonglert M. and Takkanon P., 2015, Sound Absorbing Sheets from Used Paper in the Office, Proc. of 53th Kasetsart University Annual Conference, Bangkok, 625-631.
  • Cowan J., 1994, Handbook of Environmental Acoustics, Van Nostrand Reinhold, New York, USA.
  • Homaswin K., Sangsupata S. and Intrachooto S., 2007, Para-Rubber and Coconut Fiber Integrated Acoustic Panels, Proc. of 45th Kasetsart University Annual Conference, Bangkok, 235-244.
  • Jeon C., Lee J., Chung H., Kim J. and Park J., 2017, A Study on Insulation Characteristics of Glass Wool and Mineral Wool Coated with a Polysiloxane Agent, Advance in Meterials Science and Engineering, 2017(3938965), 1-6.
  • Narakaew P. and Narakaew S., 2015, The Efficiency of the Wall for Noise and Smell Adsorptions from Rice Straw Blended with Corncob Based Activated Carbon, Research Report, Lampang Rajabhat University, Lampang, Thailand.
  • Owens CorningTM, 2004, Noise Control Design Guide, United Artists Corporate, Ohio, USA.
  • Pakunworakij T., Puthipiroj P., Oonjittichai W. and Tisavipat P., 2006, Thermal Resistance Efficiency of Building Insulation Material from Agricultural Waste, Journal of Architectural/Planning Research and Studies, 4, 3-13.
  • Wajima T. and Matsuka S., 2019, A New Recycling Process of Waste Glass Wool Using Pyrolysis with Sodium Hydroxide, International Journal of Chemical Engineering and Applications, 10(3), 75-79.
  • Yodkaew R., Sangsupata S. and Intrachooto S., 2007, Sound Absorption of an Interior Ceiling Material from Chaff, Proc. of 44th Kasetsart University Annual Conference, Bangkok, 217-225.
  • Zhao C., Liu Y., Ren S. and Zhang Y., 2018, Life Cycle Assessment of Typical Glass Wool Production in China, Materials Science Forum, 913, 998-1003.
There are 11 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Saharat Chunthum This is me

Anchasa Pramuanjaroenkıj This is me

Siriluk Phankhoksoong This is me

Rungsima Chollakup This is me

Sadık Kakac This is me

Publication Date October 31, 2022
Published in Issue Year 2022

Cite

APA Chunthum, S., Pramuanjaroenkıj, A., Phankhoksoong, S., Chollakup, R., et al. (2022). FINDING CONDITIONS IN REPROCESSING OF GLASS WOOL WASTE AS A HEAT INSULATOR. Isı Bilimi Ve Tekniği Dergisi, 42(2), 245-256. https://doi.org/10.47480/isibted.1195019