Research Article
BibTex RIS Cite

ANALYTICAL STUDY OF HEMISPHERICAL ICE SUBLIMATION IN ENCLOSURES WITH HUMIDITY AND FORCED CONVECTION

Year 2023, , 207 - 215, 17.11.2023
https://doi.org/10.47480/isibted.1391429

Abstract

In real life, sublimation of ice under certain conditions results in non-uniform formation of ice cubes with irregular shapes. During extracting these irregularly shaped cubes from enclosed spaces, the openings through which the cubes move can be plugged. A deep analysis of the sublimation process should be applied to make the shape of the ice cubes homogeneous and smooth-edged. Although there is an analytical method for the sublimation of spherical ice in literature, the hemispherical shape has not been studied. Furthermore, if ice formation and sublimation occur simultaneously within a place confined by a wall, novel approaches are necessary. In the current study, an analytical method has been proposed for the sublimation from a hemispherical ice sample as a combination of the models for the spherical and circular flat surfaces. The sublimation rate calculated by this new analytical method has been compared to the results from the weighing experiments and visualizations where the sublimation over time was measured by processing a series of images of ice cubes. There is a good agreement between the calculated values and the mass loss observed in the visualized images and the weighted samples. Thus, it is concluded that the sublimation rate is correlated with the velocity, temperature, and relative humidity of the air flowing over the ice cubes undergoing sublimation.

References

  • Aoki, K., Sawada, M., & Akahori, M. (2002). Freezing due to direct contact heat transfer including sublimation. Int. Journal of Refrigeration, 25(2), 235–242. https://doi.org/10.1016/s0140-7007(01)00084-6 Chen, L., & Zhang, X.-R. (2014). A review study of solid–gas sublimation flow for refrigeration: From basic mechanism to applications. Int. J. of Ref., 40, 61–83. https://doi.org/10.1016/j.ijrefrig.2013.11.015 Frossling, N. (1938). Uber die Verdunstung fallender Tropfen. Gerlands Beitrage Geophysik, 52:170–216.
  • Gamson, B.W. (1951). Heat and mass transfer fluid solid systems. Chem. Eng. Prog. 47 (1): 19-28
  • Garner, F. H., & Grafton, R. W. (1954). Mass transfer in fluid flow from a solid sphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 224(1156), 64–82. https://doi.org/10.1098/rspa.1954.0141 Goldstein, R. J., Sparrow, E. M., & Jones, D. C. (1973). Natural convection mass transfer adjacent to horizontal plates. Int. J. of Heat and Mass Transfer, 16(5), 1025–1035. https://doi.org/10.1016/0017-9310(73)90041-0 Hong, K., & Song, T.-H. (2007). Development of optical naphthalene sublimation method. Int. J. of Heat and Mass Transfer, 50(19-20), 3890–3898. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.017 Incropera, F. P. (2011). Fundamentals of heat and mass transfer (7th ed.). John Wiley.
  • Jambon-Puillet, E., Shahidzadeh, N., & Bonn, D. (2018). Singular sublimation of ice and snow crystals. Nature Com., 9 (1). https://doi.org/10.1038/s41467-018-06689-x
  • Langmuir, I. (1918). The Evaporation of Small Spheres. Physical Review, 12(5), 368–370. https://doi.org/10.1103/physrev.12.368
  • Lloyd, J. R., & Moran, W. R. (1974). Natural Convection Adjacent to Horizontal Surface of Various Planforms. Journal of Heat Transfer, 96(4), 443–447. https://doi.org/10.1115/1.3450224
  • Neumann, T. A., Albert, M. R., Engel, C., Courville, Z., & Perron, F. (2009). Sublimation rate and the mass-transfer coefficient for snow sublimation. Int. J. of Heat and Mass Transfer, 52(1-2), 309–315. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.003
  • Pasternak, I. S., & Gauvin, W. H. (1960). Turbulent heat and mass transfer from stationary particles. The Canadian Journal of Chemical Engineering, 38(2), 35–42. https://doi.org/10.1002/cjce.5450380202
  • Pitter, R. L., Pruppacher, H. R., & Hamielec, A. E. (1974). A Numerical Study of the Effect of Forced Convection on Mass Transport from a Thin Oblate Spheroid of Ice in Air. J. of the Atmospheric Sciences, 31(4), 1058–1066. https://doi.org/10.1175/1520-0469(1974)031<1058:ansote>2.0.co;2
  • Powell, R.W. (1940). Further experiments on the evaporation of water from saturated surfaces. Trans. Inst. Chem. Eng. 18: 36
  • Ranz, W. and Marshall, W. (1952). Evaporation from drops. Chem. Engineering Progress, 48 (3): 141-146.
  • Reitzle, M., Ruberto, S., Stierle, R., Gross, J., Janzen, T., Weigand, B. (2019). Direct numerical simulation of sublimating ice particles. Int. J. of Thermal Sciences, 145, 105953. https://doi.org/10.1016/j.ijthermalsci.2019.05.009
  • Ruberto, S., Reutzsch, J., Roth, N., & Weigand, B. (2017). A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity. Experiments in Fluids, 58(5). https://doi.org/10.1007/s00348-017-2339-5
  • Schmidt R. and Gluns D. (1992). Sublimation of snow--the basics. Proceedings, International Snow Science Workshop, Breckenridge, Colorado, USA pp. 11-17
  • Schmidt R. A. (1972). Sublimation of wind-transported snow: a model. U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
  • Smolík, J., & Vítovec, J. (1983). Transient heat and mass transfer in the two-phase system: Subliming solid-vapour-gas mixture. Int. J. of Heat and Mass Transfer, 26(7), 975–980. https://doi.org/10.1016/s0017-9310(83)80122-7
  • Thorpe, A. D., & Mason, B. J. (1966). The evaporation of ice spheres and ice crystals. British Journal of Applied Physics, 17(4), 541–548. https://doi.org/10.1088/0508-3443/17/4/316
  • Zhao, Y., Guo, Q., Lin, T., & Cheng, P. (2020). A review of recent literature on icing phenomena: Transport mechanisms, their modulations and controls. Int. J. of Heat and Mass Transfer, 159, 120074. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120074

NEMLİ VE ZORLANMIŞ TAŞINIMLI KAPALI HACİMLERDE YARIKÜRESEL BUZ SÜBLİMASYONUNUN ANALİTİK İNCELENMESİ

Year 2023, , 207 - 215, 17.11.2023
https://doi.org/10.47480/isibted.1391429

Abstract

Gerçek hayatta, buzun belirli koşullar altında süblimleşmesi, düzensiz şekilli buz küplerinin oluşumuyla sonuçlanır. Düzensiz şekilli bu küplerin kapalı alanlardan çıkarılması sırasında küplerin hareket ettiği açıklıklar tıkanabilir. Buz küplerinin şeklinin homojen ve düzgün kenarlı olması için süblimasyon prosesinin derinlemesine analizi gerçekleştirilmelidir. Literatürde küresel buzun süblimleşmesine yönelik analitik bir yöntem bulunmasına rağmen yarım küre şekli çalışılmamıştır. Ayrıca, duvarla sınırlandırılmış bir hacimde buz oluşumu ve süblimleşme aynı anda meydana geliyorsa, yeni yaklaşımlar gereklidir. Bu çalışmada, küresel ve dairesel düz yüzey modellerinin bir kombinasyonu olarak yarım küre şeklindeki bir buz örneğinden süblimleşme için analitik bir yöntem önerilmiştir. Bu yeni analitik yöntemle hesaplanan süblimleşme miktarı, süblimleşmenin bir dizi buz küpü görüntüsünün işlenmesiyle elde edildiği görselleştirme deneyleri ve tartım yapılarak elde edilen sonuçlarla karşılaştırıldı. Hesaplanan değerler ile görselleştirme sonuçlarında ve tartım yapılmış numunelerde gözlemlenen kütle kaybı arasında iyi bir uyum vardır. Elde edilen sonuçlara göre süblimleşme miktarının, süblimleşmeye uğrayan buz küplerinin üzerinden akan havanın hızı, sıcaklığı ve bağıl nemi ile ilişkili olduğu sonucuna varılmıştır.

References

  • Aoki, K., Sawada, M., & Akahori, M. (2002). Freezing due to direct contact heat transfer including sublimation. Int. Journal of Refrigeration, 25(2), 235–242. https://doi.org/10.1016/s0140-7007(01)00084-6 Chen, L., & Zhang, X.-R. (2014). A review study of solid–gas sublimation flow for refrigeration: From basic mechanism to applications. Int. J. of Ref., 40, 61–83. https://doi.org/10.1016/j.ijrefrig.2013.11.015 Frossling, N. (1938). Uber die Verdunstung fallender Tropfen. Gerlands Beitrage Geophysik, 52:170–216.
  • Gamson, B.W. (1951). Heat and mass transfer fluid solid systems. Chem. Eng. Prog. 47 (1): 19-28
  • Garner, F. H., & Grafton, R. W. (1954). Mass transfer in fluid flow from a solid sphere. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 224(1156), 64–82. https://doi.org/10.1098/rspa.1954.0141 Goldstein, R. J., Sparrow, E. M., & Jones, D. C. (1973). Natural convection mass transfer adjacent to horizontal plates. Int. J. of Heat and Mass Transfer, 16(5), 1025–1035. https://doi.org/10.1016/0017-9310(73)90041-0 Hong, K., & Song, T.-H. (2007). Development of optical naphthalene sublimation method. Int. J. of Heat and Mass Transfer, 50(19-20), 3890–3898. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.017 Incropera, F. P. (2011). Fundamentals of heat and mass transfer (7th ed.). John Wiley.
  • Jambon-Puillet, E., Shahidzadeh, N., & Bonn, D. (2018). Singular sublimation of ice and snow crystals. Nature Com., 9 (1). https://doi.org/10.1038/s41467-018-06689-x
  • Langmuir, I. (1918). The Evaporation of Small Spheres. Physical Review, 12(5), 368–370. https://doi.org/10.1103/physrev.12.368
  • Lloyd, J. R., & Moran, W. R. (1974). Natural Convection Adjacent to Horizontal Surface of Various Planforms. Journal of Heat Transfer, 96(4), 443–447. https://doi.org/10.1115/1.3450224
  • Neumann, T. A., Albert, M. R., Engel, C., Courville, Z., & Perron, F. (2009). Sublimation rate and the mass-transfer coefficient for snow sublimation. Int. J. of Heat and Mass Transfer, 52(1-2), 309–315. https://doi.org/10.1016/j.ijheatmasstransfer.2008.06.003
  • Pasternak, I. S., & Gauvin, W. H. (1960). Turbulent heat and mass transfer from stationary particles. The Canadian Journal of Chemical Engineering, 38(2), 35–42. https://doi.org/10.1002/cjce.5450380202
  • Pitter, R. L., Pruppacher, H. R., & Hamielec, A. E. (1974). A Numerical Study of the Effect of Forced Convection on Mass Transport from a Thin Oblate Spheroid of Ice in Air. J. of the Atmospheric Sciences, 31(4), 1058–1066. https://doi.org/10.1175/1520-0469(1974)031<1058:ansote>2.0.co;2
  • Powell, R.W. (1940). Further experiments on the evaporation of water from saturated surfaces. Trans. Inst. Chem. Eng. 18: 36
  • Ranz, W. and Marshall, W. (1952). Evaporation from drops. Chem. Engineering Progress, 48 (3): 141-146.
  • Reitzle, M., Ruberto, S., Stierle, R., Gross, J., Janzen, T., Weigand, B. (2019). Direct numerical simulation of sublimating ice particles. Int. J. of Thermal Sciences, 145, 105953. https://doi.org/10.1016/j.ijthermalsci.2019.05.009
  • Ruberto, S., Reutzsch, J., Roth, N., & Weigand, B. (2017). A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity. Experiments in Fluids, 58(5). https://doi.org/10.1007/s00348-017-2339-5
  • Schmidt R. and Gluns D. (1992). Sublimation of snow--the basics. Proceedings, International Snow Science Workshop, Breckenridge, Colorado, USA pp. 11-17
  • Schmidt R. A. (1972). Sublimation of wind-transported snow: a model. U.S. Dept. of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station.
  • Smolík, J., & Vítovec, J. (1983). Transient heat and mass transfer in the two-phase system: Subliming solid-vapour-gas mixture. Int. J. of Heat and Mass Transfer, 26(7), 975–980. https://doi.org/10.1016/s0017-9310(83)80122-7
  • Thorpe, A. D., & Mason, B. J. (1966). The evaporation of ice spheres and ice crystals. British Journal of Applied Physics, 17(4), 541–548. https://doi.org/10.1088/0508-3443/17/4/316
  • Zhao, Y., Guo, Q., Lin, T., & Cheng, P. (2020). A review of recent literature on icing phenomena: Transport mechanisms, their modulations and controls. Int. J. of Heat and Mass Transfer, 159, 120074. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120074
There are 18 citations in total.

Details

Primary Language English
Subjects Fundamental and Theoretical Fluid Dynamics
Journal Section Research Article
Authors

Mehmet Anıl Gülşan

Sedat Tokgoz

Seyhan Onbaşıoğlu

Publication Date November 17, 2023
Published in Issue Year 2023

Cite

APA Gülşan, M. A., Tokgoz, S., & Onbaşıoğlu, S. (2023). ANALYTICAL STUDY OF HEMISPHERICAL ICE SUBLIMATION IN ENCLOSURES WITH HUMIDITY AND FORCED CONVECTION. Isı Bilimi Ve Tekniği Dergisi, 43(2), 207-215. https://doi.org/10.47480/isibted.1391429