Research Article
BibTex RIS Cite

INVESTIGATION OF THERMAL BRIDGE EFFECT ON HEAT LOSSES AND HYGROTHERMAL PERFORMANCE

Year 2024, , 245 - 258, 03.06.2024
https://doi.org/10.47480/isibted.1494504

Abstract

The largest energy loss in buildings, which have a significant potential for energy efficiency, occurs in the building envelope. At present, one of the most basic approaches to reducing heat loss in the building envelope, which consists of various layers of different thicknesses and properties, is to avoid thermal bridges. Thermal bridges are areas where heat conduction is higher than other components of the building and where moisture problems are primarily encountered and are of great importance in the evaluation of building energy performance. In today's widely applied reinforced concrete frame construction system, many thermal bridges occur for various reasons. Thermal bridges occurring at the corner points of the building significantly affect the average thermal transmittance of the building. These areas are also the areas where condensation and mould formation are common. The insulation status of these regions affects the thermal and hygrothermal performance. Necessary measures should be taken by calculating the hygrothermal performance of the building envelope during the design phase. Various simulation tools are used for this purpose. In this way, the building envelope can provide energy, comfort, and health conditions during the design phase. In this study, heat losses and hygrothermal performance of thermal bridges are investigated. The thermal bridges occurring at the corner point of an existing residential building were evaluated according to the conditions of uninsulated, partially insulated and externally insulated. Analyses within the scope of the study were carried out with Quick Field 6.3 and Wufi 2D-4.3 programs. In the analyses, it is seen that 37% more heat loss occurs in the case of partial insulation of thermal bridges than in the case of continuous external insulation. Likewise, in terms of hygrothermal performance, there is no condensation risk in the case of continuous external insulation.

References

  • IEA (International Energy Agency), 2013, Transition to Sustainable Buildings-Strategies and Opportunities to 2050. Transition to Sustainable Buildings. https://doi.org/10.1787/9789264202955-en
  • European Comission, 2020. (https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en#zero-emission-buildings).
  • Garay, R., Uriarte, A. and Apraiz, I., 2014, Performance assessment of thermal bridge elements into a full scale experimental study of a building façade. Energy and Buildings, 85, 579–591. https://doi.org/10.1016/J.ENBUILD.2014.09.024
  • Goggins, J., Moran, P., Armstrong, A. and Hajdukiewicz, M., 2016, Lifecycle environmental and economic performance of nearly zero energy buildings (NZEB) in Ireland, Energy Build. Vol:116, pp. 622–637.
  • O’Grady, M., Lechowska, A. A. and Harte, A. M., 2018, Application of infrared thermography technique to the thermal assessment of multiple thermal bridges and Windows, Energy and Buildings, 168, 347–362.
  • Evola, G., Margani, G. and Marletta, L. 2011, Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy and Buildings, 43(9), 2385–2393. https://doi.org/10.1016/j.enbuild.2011.05.028.
  • Bergero, S. and Chiari, A., 2018, The influence of thermal bridge calculation method on the building energy need: A case study. Energy Procedia, 148(Ati), 1042–1049.
  • De Angelis, E. and Serra, E., 2014, Light steel-frame walls: Thermal insulation performances and thermal bridges. Energy Procedia, 45, 362–371.
  • Martins, C., Santos, P. and Da Silva, L. S., 2016, Lightweight steel-framed thermal bridges mitigation strategies: A parametric study. Journal of Building Physics, 39(4), 342–372.
  • Zhao, K., Jiang, Z., Huang, Y., Sun, Z., Wang, L., Gao, W. and GE, J., 2022, The method of reducing heat loss from thermal bridges in residential buildings with internal insulation in China’s hot summer and cold winter zone. Journal of Building Engineering, 62, 105421.
  • Erhorn-kluttig, H., Erhorn, H., Citterio, M., Cocco, M., Orshoven, V. and Tilmans, A., 2009, Thermal Bridges in the EPBD context, 30th AIVC Conference “Trends in High Performance Buildings”, Berlin/Germany, October 1-2.
  • Martin, K., Campos-Celador, A., Escudero, C., Gómez, I. and Sala, J. M., 2012, Analysis of a thermal bridge in a guarded hot box testing facility. Energy and Buildings, 50, 139–149.
  • Ge, H., McClung, V. R. and Zhang, S., 2013, Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study. Energy and Buildings, 60, 163–173.
  • Aghasizadeh, S., Kari, B.M, Fayaz, R., 2022, “Thermal performance of balcony thermal bridge solutions in reinforced concrete and steel frame structures”, Journal of Building Engineering, Volume 48, 1 May, 103984.
  • Aguilar, F., Solano, J. P. and Vicente, P. G., 2014, Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method. Applied Thermal Engineering, 67(1–2), 370–377.
  • Ascione, F., Bianco, N., De Masi, R. F., De’Rossi, F. and Vanoli, G. P., 2013, Simplified state space representation for evaluating thermal bridges in building: Modelling, application and validation of a methodology. Applied Thermal Engineering, 61(2), 344–354.
  • Dumitrescu, L., Baran, I. and Pescaru, R. A., 2017, The Influence of Thermal Bridges in the Process of Buildings Thermal Rehabilitation. Procedia Engineering, 181, 682–689.
  • Kotti, S., Teli, D. and James, P. A. B., 2017, Quantifying Thermal Bridge Effects and Assessing Retrofit Solutions in a Greek Residential Building. Procedia Environmental Sciences, 38, 306–313.
  • Marincioni, V., May, N. and Altamirano-Medina, H., 2015, Parametric study on the impact of thermal bridges on the heat loss of internally insulated buildings. Energy Procedia, 78, 889–894.
  • Viot, H., Sempey, A., Pauly, M. and Mora, L., 2015, Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Building and Environment, 93(P2), 339–348.
  • Fantucci, S., Isaia, F., Serra, V. and Dutto, M., 2017, Insulating coat to prevent mold growth in thermal bridges. Energy Procedia, 134, 414–422.
  • Martin, K., Escudero, C., Erkoreka, A., Flores, I. and Sala, J. M., 2012, Equivalent wall method for dynamic characterisation of thermal bridges. Energy and Buildings, 55, 704–714.
  • El Saied, A., Maalouf, C., Bejat, T. and Wurtz, E., 2022, Slab-on-grade thermal bridges: A thermal behavior and solution review, Energy and Buildings, Volume 257, 111770.
  • Asdrubali, F., Baldinelli, G. and Bianchi, F., 2012, A quantitative methodology to evaluate thermal bridges in buildings. Applied Energy, 97, 365–373.
  • Ahrab, M. A. M. and Akbari, H., 2013, Hygrothermal behaviour of flat cool and standard roofs on residential and commercial buildings in North America. Building and Environment, 60, 1–11.
  • Theodosiou, T., Tsikaloudaki, K., Tsoka, S. and Chastas, P. 2019, Thermal bridging problems on advanced cladding systems and smart building facades. Journal of Cleaner Production, 214, 62–69.
  • Terentjevas, J., Šadauskaitė, M., Šadauskienė, J., Ramanauskas, J., Buska, A. and Fokaides, P. A. 2021, Numerical investigation of buildings point thermal bridges observed on window-thermal insulation interface, Case Studies in Construction Materials, Volume 15.
  • Ascione, F., Bianco, N., De Rossi, F., Turni, G. and Vanoli, G. P., 2012, Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates. Applied Energy, 97, 405–418.
  • Theodosiou, T., Tsikaloudaki, K. and Bikas, D., 2017, Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences, 38, 397–404.
  • BS EN ISO 10211, 2007, Thermal bridges in building construction- Heat flows and surface temperatures- Detailed calculations, 3(1), 54.
  • Prata, J., Simões, N. and Tadeu, A., 2018, Heat transfer measurements of a linear thermal bridge in a wooden building corner. Energy and Buildings, 158, 194–208.
  • Özel, M., 2022, Determination of indoor design temperature, thermal characteristics and insulation thickness under hot climate conditions. Isı Bilimi ve Tekniği Dergisi, 42, 1, 49-64.
  • Çağlayan S., Ozorhon, B. and Kurnaz, L. 2022, Nationwide mapping of optimum wall insulation thicknesses: a stochastic approach. Isı Bilimi ve Tekniği Dergisi, 42, 2, 169-202.
  • ISO 8990, 1994, Thermal insulation- Determination of steady-state thermal transmission properties- Calibrated and guarded hot box.
  • Asdrubali, F. and Baldinelli, G., 2011, Thermal transmittance measurements with the hot box method: calibration, experimental procedures, and uncertainty analysis of three different approaches, Energy Build. Vol:43, pp.1618–1626.
  • Fang, Y., Eames, P.C., Norton, B. and Hyde, T.J. 2006, Experimental validation of a numerical model for heat transfer in vaccum glazing, Sol. Energy. Vol:80, pp.564–577.
  • Zalewski, L., Lassue, S., Rousse, D. and Boukhalfa, K., 2010, Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Conversion and Management, 51(12), 2869–2877.
  • Capozzoli, A., Gorrino, A. and Corrado, V., 2013, A building thermal bridges sensitivity analysis. Applied Energy, 107, 229–243.
  • Al-Sanea, S. A. and Zedan, M. F., 2012, Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Applied Energy, 98, 584–593.
  • BrumǍ, B., Moga, L. and Moga, I., 2015, Aspects Regarding Dynamic Calculation of Plan Building Elements Having Thermal Bridges. Energy Procedia, 85(November 2015), 77–84.
  • Quinten, J. and Feldheim, V., 2016, Dynamic modelling of multidimensional thermal bridges in building envelopes: Review of existing methods, application and new mixed method. Energy and Buildings, 110, 284–293.
  • Karacavus, B. and Can, A., 2008, Experimental investigation of a solar energy heating system under the climatic conditions of Edirne. Renewable Energy, 33(9), 2084–2096.
  • Romero, M. J., Aguilar, F. and Vicente, P. G., 2021, Analysis of design improvements for thermal bridges formed by double-brick façades and intermediate slabs for nZEB residential buildings in Spain, Journal of Building Engineering, Volume 44, 103270.
  • Capozzoli, A., Gorrino, A., Corrado, V., Grinzato, E., Vavilov, V., Kauppinen, T., Fukuyo, K., 2013, Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy and Buildings, 107(9), 2385–2393.
  • Ge, H. and Baba. F., 2015, Dynamic effect of thermal bridges on the energy performance of a low-rise residential building”. Energy and Buildings Volume 105, Pages 106-118.
  • Antretter, F., Dring, J. R. and Pazold, M., 2013, Coupling of Dynamic Thermal Bridge and Whole-Building Simulation, Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference, Buildings XII.
  • Real, S., Gomes, M.G., Rodrigues, A.M. and Bogas, J.A., 2016, Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings, Construction and Building Materials. Vol: 121, pp.460–470.
  • Fukuyo, K., 2003, Heat flow visualization for thermal bridge problems. International Journal of Refrigeration, 26(5), 614–617.
  • Schöck Ltd., 2015, Thermal Bridging Guide. Schöck Ltd, Oxford, (June). Retrieved from https://www.schoeck.co.uk/view/5993/Thermal_Bridging_Guide_Schoeck_Isokorb_%5B5993%5D.pdf
  • TS 825, 2013, Binalarda Isı Yalıtım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • BEPY, 2010, Binalarda Enerji Performansı Yönetmeliği, Bayındırlık ve İskân Bakanlığı, Aralık.
  • TS EN ISO 10211, 2017, Bina yapılarında ısıl köprüler- Isı akışları ve yüzey sıcaklıkları- Ayrıntılı hesaplama yöntemleri, Türk Standartları Enstitüsü, Ankara.
  • TS EN ISO 14683, 2017, Bina inşaatı-Isıl köprüler-Lineer ısıl geçirgenlik-Basitleştirilmiş metot ve hatasız değerler, Türk Standartları Enstitüsü, Ankara.
  • Quick Field, 2017, Quick Field ™ Finite Element Analysis System Version 6.3 User's Guide, Tera Analysis Ltd. / http://quickfield.com (Son erişim tarihi:16.05.2023)
  • Umaroğulları, F., Zorer Gedik, G. and Mıhlayanlar, E., 2011, Condensation Control of Insulated and Uninsulated Concrete Walls in the Periodic Regime: The Case of Edirne. Megaron, 6(1): 13-20.
  • Hallik, J. and Kalamees, T., 2021, The effect of flanking element length in thermal bridge calculation and possible simplifications to account for combined thermal bridges in well insulated building envelopes, Energy & Buildings 252, 111397, 1-10.

ISI KÖPRÜLERİNDE HİGROTERMAL PERFORMANSIN VE ISI KAYIPLARININ İNCELENMESİ

Year 2024, , 245 - 258, 03.06.2024
https://doi.org/10.47480/isibted.1494504

Abstract

Enerji verimliliğinde önemli bir potansiyele sahip olan binalarda enerji kaybının en büyük kısmı bina kabuğundan gerçekleşmektedir. Günümüzde; farklı kalınlık ve özellikteki çeşitli katmanlardan oluşan bina kabuğunda, ısı kaybının azaltılmasında, ısı köprülerinden kaçınmaya yönelik uygulamalar en temel yaklaşımlardan biridir. Diğer bileşenlere oranla ısı iletiminin daha fazla olduğu ve nem problemlerinin öncelikle karşılaşıldığı alanlar olan ısı köprülerinin bina enerji performansının değerlendirilmesinde önemi büyüktür. Günümüzde yaygın olarak uygulanan betonarme karkas yapım sisteminde çeşitli nedenlerle çok sayıda ısı köprüsü meydana gelmektedir. Köşe noktalarında meydana gelen ısı köprüleri binanın ortalama ısı geçirgenliğini önemli ölçüde etkiler. Aynı zamanda yoğuşma ve küf oluşumunun da yaygın görüldüğü bölgelerdir. Bu bölgelerin yalıtım durumu da ısıl ve higrotermal performansı etkilemektedir. Tasarım aşamasında bina kabuğunun higrotermal performansı hesaplanarak gerekli önlemler alınmalıdır. Bu amaçla çeşitli benzetim araçları kullanılmaktadır. Böylece tasarım aşamasında bina kabuğunun enerji, konfor ve sağlık koşullarını sağlaması mümkün olabilecektir. Bu çalışmada ısı köprülerindeki ısı kayıpları ve higrotermal performans araştırılmıştır. Mevcut bir konut yapısının köşe noktasında meydana gelen ısı köprüleri, yalıtımsız, kısmi yalıtımlı ve dışardan yalıtımlı olma durumlarına göre değerlendirilmiştir. Çalışma kapsamında Quick Field 6.3 ve Wufi 2D-4.3 programları aracılığıyla yapılan analizlerden ısı köprülerinin kısmi yalıtılması durumunda kesintisiz dışarıdan yalıtımlı olma durumuna göre %37 daha fazla ısı kaybı meydana geldiği görülmüştür. Aynı zamanda higrotermal performans açısından da kesintisiz dışardan yalıtımlı durumda yoğuşma riski görülmemektedir.

References

  • IEA (International Energy Agency), 2013, Transition to Sustainable Buildings-Strategies and Opportunities to 2050. Transition to Sustainable Buildings. https://doi.org/10.1787/9789264202955-en
  • European Comission, 2020. (https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/nearly-zero-energy-buildings_en#zero-emission-buildings).
  • Garay, R., Uriarte, A. and Apraiz, I., 2014, Performance assessment of thermal bridge elements into a full scale experimental study of a building façade. Energy and Buildings, 85, 579–591. https://doi.org/10.1016/J.ENBUILD.2014.09.024
  • Goggins, J., Moran, P., Armstrong, A. and Hajdukiewicz, M., 2016, Lifecycle environmental and economic performance of nearly zero energy buildings (NZEB) in Ireland, Energy Build. Vol:116, pp. 622–637.
  • O’Grady, M., Lechowska, A. A. and Harte, A. M., 2018, Application of infrared thermography technique to the thermal assessment of multiple thermal bridges and Windows, Energy and Buildings, 168, 347–362.
  • Evola, G., Margani, G. and Marletta, L. 2011, Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy and Buildings, 43(9), 2385–2393. https://doi.org/10.1016/j.enbuild.2011.05.028.
  • Bergero, S. and Chiari, A., 2018, The influence of thermal bridge calculation method on the building energy need: A case study. Energy Procedia, 148(Ati), 1042–1049.
  • De Angelis, E. and Serra, E., 2014, Light steel-frame walls: Thermal insulation performances and thermal bridges. Energy Procedia, 45, 362–371.
  • Martins, C., Santos, P. and Da Silva, L. S., 2016, Lightweight steel-framed thermal bridges mitigation strategies: A parametric study. Journal of Building Physics, 39(4), 342–372.
  • Zhao, K., Jiang, Z., Huang, Y., Sun, Z., Wang, L., Gao, W. and GE, J., 2022, The method of reducing heat loss from thermal bridges in residential buildings with internal insulation in China’s hot summer and cold winter zone. Journal of Building Engineering, 62, 105421.
  • Erhorn-kluttig, H., Erhorn, H., Citterio, M., Cocco, M., Orshoven, V. and Tilmans, A., 2009, Thermal Bridges in the EPBD context, 30th AIVC Conference “Trends in High Performance Buildings”, Berlin/Germany, October 1-2.
  • Martin, K., Campos-Celador, A., Escudero, C., Gómez, I. and Sala, J. M., 2012, Analysis of a thermal bridge in a guarded hot box testing facility. Energy and Buildings, 50, 139–149.
  • Ge, H., McClung, V. R. and Zhang, S., 2013, Impact of balcony thermal bridges on the overall thermal performance of multi-unit residential buildings: A case study. Energy and Buildings, 60, 163–173.
  • Aghasizadeh, S., Kari, B.M, Fayaz, R., 2022, “Thermal performance of balcony thermal bridge solutions in reinforced concrete and steel frame structures”, Journal of Building Engineering, Volume 48, 1 May, 103984.
  • Aguilar, F., Solano, J. P. and Vicente, P. G., 2014, Transient modeling of high-inertial thermal bridges in buildings using the equivalent thermal wall method. Applied Thermal Engineering, 67(1–2), 370–377.
  • Ascione, F., Bianco, N., De Masi, R. F., De’Rossi, F. and Vanoli, G. P., 2013, Simplified state space representation for evaluating thermal bridges in building: Modelling, application and validation of a methodology. Applied Thermal Engineering, 61(2), 344–354.
  • Dumitrescu, L., Baran, I. and Pescaru, R. A., 2017, The Influence of Thermal Bridges in the Process of Buildings Thermal Rehabilitation. Procedia Engineering, 181, 682–689.
  • Kotti, S., Teli, D. and James, P. A. B., 2017, Quantifying Thermal Bridge Effects and Assessing Retrofit Solutions in a Greek Residential Building. Procedia Environmental Sciences, 38, 306–313.
  • Marincioni, V., May, N. and Altamirano-Medina, H., 2015, Parametric study on the impact of thermal bridges on the heat loss of internally insulated buildings. Energy Procedia, 78, 889–894.
  • Viot, H., Sempey, A., Pauly, M. and Mora, L., 2015, Comparison of different methods for calculating thermal bridges: Application to wood-frame buildings. Building and Environment, 93(P2), 339–348.
  • Fantucci, S., Isaia, F., Serra, V. and Dutto, M., 2017, Insulating coat to prevent mold growth in thermal bridges. Energy Procedia, 134, 414–422.
  • Martin, K., Escudero, C., Erkoreka, A., Flores, I. and Sala, J. M., 2012, Equivalent wall method for dynamic characterisation of thermal bridges. Energy and Buildings, 55, 704–714.
  • El Saied, A., Maalouf, C., Bejat, T. and Wurtz, E., 2022, Slab-on-grade thermal bridges: A thermal behavior and solution review, Energy and Buildings, Volume 257, 111770.
  • Asdrubali, F., Baldinelli, G. and Bianchi, F., 2012, A quantitative methodology to evaluate thermal bridges in buildings. Applied Energy, 97, 365–373.
  • Ahrab, M. A. M. and Akbari, H., 2013, Hygrothermal behaviour of flat cool and standard roofs on residential and commercial buildings in North America. Building and Environment, 60, 1–11.
  • Theodosiou, T., Tsikaloudaki, K., Tsoka, S. and Chastas, P. 2019, Thermal bridging problems on advanced cladding systems and smart building facades. Journal of Cleaner Production, 214, 62–69.
  • Terentjevas, J., Šadauskaitė, M., Šadauskienė, J., Ramanauskas, J., Buska, A. and Fokaides, P. A. 2021, Numerical investigation of buildings point thermal bridges observed on window-thermal insulation interface, Case Studies in Construction Materials, Volume 15.
  • Ascione, F., Bianco, N., De Rossi, F., Turni, G. and Vanoli, G. P., 2012, Different methods for the modelling of thermal bridges into energy simulation programs: Comparisons of accuracy for flat heterogeneous roofs in Italian climates. Applied Energy, 97, 405–418.
  • Theodosiou, T., Tsikaloudaki, K. and Bikas, D., 2017, Analysis of the Thermal Bridging Effect on Ventilated Facades. Procedia Environmental Sciences, 38, 397–404.
  • BS EN ISO 10211, 2007, Thermal bridges in building construction- Heat flows and surface temperatures- Detailed calculations, 3(1), 54.
  • Prata, J., Simões, N. and Tadeu, A., 2018, Heat transfer measurements of a linear thermal bridge in a wooden building corner. Energy and Buildings, 158, 194–208.
  • Özel, M., 2022, Determination of indoor design temperature, thermal characteristics and insulation thickness under hot climate conditions. Isı Bilimi ve Tekniği Dergisi, 42, 1, 49-64.
  • Çağlayan S., Ozorhon, B. and Kurnaz, L. 2022, Nationwide mapping of optimum wall insulation thicknesses: a stochastic approach. Isı Bilimi ve Tekniği Dergisi, 42, 2, 169-202.
  • ISO 8990, 1994, Thermal insulation- Determination of steady-state thermal transmission properties- Calibrated and guarded hot box.
  • Asdrubali, F. and Baldinelli, G., 2011, Thermal transmittance measurements with the hot box method: calibration, experimental procedures, and uncertainty analysis of three different approaches, Energy Build. Vol:43, pp.1618–1626.
  • Fang, Y., Eames, P.C., Norton, B. and Hyde, T.J. 2006, Experimental validation of a numerical model for heat transfer in vaccum glazing, Sol. Energy. Vol:80, pp.564–577.
  • Zalewski, L., Lassue, S., Rousse, D. and Boukhalfa, K., 2010, Experimental and numerical characterization of thermal bridges in prefabricated building walls. Energy Conversion and Management, 51(12), 2869–2877.
  • Capozzoli, A., Gorrino, A. and Corrado, V., 2013, A building thermal bridges sensitivity analysis. Applied Energy, 107, 229–243.
  • Al-Sanea, S. A. and Zedan, M. F., 2012, Effect of thermal bridges on transmission loads and thermal resistance of building walls under dynamic conditions. Applied Energy, 98, 584–593.
  • BrumǍ, B., Moga, L. and Moga, I., 2015, Aspects Regarding Dynamic Calculation of Plan Building Elements Having Thermal Bridges. Energy Procedia, 85(November 2015), 77–84.
  • Quinten, J. and Feldheim, V., 2016, Dynamic modelling of multidimensional thermal bridges in building envelopes: Review of existing methods, application and new mixed method. Energy and Buildings, 110, 284–293.
  • Karacavus, B. and Can, A., 2008, Experimental investigation of a solar energy heating system under the climatic conditions of Edirne. Renewable Energy, 33(9), 2084–2096.
  • Romero, M. J., Aguilar, F. and Vicente, P. G., 2021, Analysis of design improvements for thermal bridges formed by double-brick façades and intermediate slabs for nZEB residential buildings in Spain, Journal of Building Engineering, Volume 44, 103270.
  • Capozzoli, A., Gorrino, A., Corrado, V., Grinzato, E., Vavilov, V., Kauppinen, T., Fukuyo, K., 2013, Energy and cost evaluation of thermal bridge correction in Mediterranean climate. Energy and Buildings, 107(9), 2385–2393.
  • Ge, H. and Baba. F., 2015, Dynamic effect of thermal bridges on the energy performance of a low-rise residential building”. Energy and Buildings Volume 105, Pages 106-118.
  • Antretter, F., Dring, J. R. and Pazold, M., 2013, Coupling of Dynamic Thermal Bridge and Whole-Building Simulation, Thermal Performance of the Exterior Envelopes of Whole Buildings XII International Conference, Buildings XII.
  • Real, S., Gomes, M.G., Rodrigues, A.M. and Bogas, J.A., 2016, Contribution of structural lightweight aggregate concrete to the reduction of thermal bridging effect in buildings, Construction and Building Materials. Vol: 121, pp.460–470.
  • Fukuyo, K., 2003, Heat flow visualization for thermal bridge problems. International Journal of Refrigeration, 26(5), 614–617.
  • Schöck Ltd., 2015, Thermal Bridging Guide. Schöck Ltd, Oxford, (June). Retrieved from https://www.schoeck.co.uk/view/5993/Thermal_Bridging_Guide_Schoeck_Isokorb_%5B5993%5D.pdf
  • TS 825, 2013, Binalarda Isı Yalıtım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • BEPY, 2010, Binalarda Enerji Performansı Yönetmeliği, Bayındırlık ve İskân Bakanlığı, Aralık.
  • TS EN ISO 10211, 2017, Bina yapılarında ısıl köprüler- Isı akışları ve yüzey sıcaklıkları- Ayrıntılı hesaplama yöntemleri, Türk Standartları Enstitüsü, Ankara.
  • TS EN ISO 14683, 2017, Bina inşaatı-Isıl köprüler-Lineer ısıl geçirgenlik-Basitleştirilmiş metot ve hatasız değerler, Türk Standartları Enstitüsü, Ankara.
  • Quick Field, 2017, Quick Field ™ Finite Element Analysis System Version 6.3 User's Guide, Tera Analysis Ltd. / http://quickfield.com (Son erişim tarihi:16.05.2023)
  • Umaroğulları, F., Zorer Gedik, G. and Mıhlayanlar, E., 2011, Condensation Control of Insulated and Uninsulated Concrete Walls in the Periodic Regime: The Case of Edirne. Megaron, 6(1): 13-20.
  • Hallik, J. and Kalamees, T., 2021, The effect of flanking element length in thermal bridge calculation and possible simplifications to account for combined thermal bridges in well insulated building envelopes, Energy & Buildings 252, 111397, 1-10.
There are 56 citations in total.

Details

Primary Language Turkish
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Article
Authors

Filiz Umaroğulları 0000-0002-9503-1816

Esma Mıhlayanlar 0000-0002-0020-2839

Melek Seyit 0000-0003-1916-7508

Publication Date June 3, 2024
Submission Date January 3, 2024
Acceptance Date April 3, 2024
Published in Issue Year 2024

Cite

APA Umaroğulları, F., Mıhlayanlar, E., & Seyit, M. (2024). ISI KÖPRÜLERİNDE HİGROTERMAL PERFORMANSIN VE ISI KAYIPLARININ İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 44(1), 245-258. https://doi.org/10.47480/isibted.1494504