Research Article
BibTex RIS Cite

ENERGY AND ENVIRONMENTAL ASSESSMENT OF CO2 BOOSTER REFRIGERATION CYCLES WITH FLOODED EVAPORATORS AND PARALLEL COMPRESSOR FOR SUPERMARKETS IN TÜRKİYE

Year 2024, , 17 - 31, 03.06.2024
https://doi.org/10.47480/isibted.1493766

Abstract

CO2 booster refrigeration systems have higher energy efficiency and are more environmentally friendly. Therefore, the CO2 booster refrigeration cycle with flooded evaporators and parallel compressors (BFP), BFP with mechanical subcooling (BFP-MSC), and BFP with evaporative cooling (BFP-EVC) are investigated for supermarkets in this study. For the first time in the literature, these systems are analyzed to present which system performs better in terms of energy and environmental performance for Türkiye. According to the results of the investigation, BFP-MSC has a better coefficient of performance (COP) values than BFP, with up to a 16.67% increase at equivalent dry bulb temperatures. Meanwhile, BFP-EVC has the lowest annual energy consumption (AEC) in each city, followed by BFP-MSC and then BFP. Annual savings obtained by BFP-EVC over BFP vary between 10.81% to 25.47%. Additionally, BFP-EVC offers more substantial savings in cities with lower humidity levels, as it was analyzed with respect to wet bulb temperatures.

References

  • Amaris, C., Tsamos, K. M., and Tassou, S. A., 2019, Analysis of an R744 typical booster configuration, an R744 parallel-compressor booster configuration and an R717/R744 cascade refrigeration system for retail food applications. Part 1: Thermodynamic analysis. Energy Procedia, 161, 259–267. https://doi.org/10.1016/j.egypro.2019.02.090
  • Atmaca, A. U., Erek, A., Ekren, O., and Çoban, M. T., 2018, Thermodynamic Performance of the Transcritical Refrigeration Cycle with Ejector Expansion for R744, R170, and R41. J. of Thermal Science and Technology, 38, 111–127.
  • Bayrakçı, H. C., Özgür, A. E., and Alan, A., 2014, Çift Kademeli Transkritik R744 Soğutma Sistemlerinde Genleşme Türbini Kullanımının Termodinamik Analizi. J. of Thermal Science and Technology, 34, 91–97.
  • Caliskan, O., and Ersoy, H. K., 2022, Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles. The Journal of Supercritical Fluids, 189, 105698. https://doi.org/10.1016/j.supflu.2022.105698
  • Chesi, A., Esposito, F., Ferrara, G., and Ferrari, L., 2014, Experimental analysis of R744 parallel compression cycle. Applied Energy, 135, 274–285. https://doi.org/10.1016/j.apenergy.2014.08.087
  • Cui, Q., Gao, E., Zhang, Z., and Zhang, X., 2020, Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China: An energetic, economic, and environmental analysis. Energy Conversion and Management, 225. https://doi.org/10.1016/j.enconman.2020.113422
  • Dai, B., Cao, Y., Liu, S., Ji, Y., Sun, Z., Xu, T., Zhang, P., and Nian, V., 2022, Annual energetic evaluation of multi-stage dedicated mechanical subcooling carbon dioxide supermarket refrigeration system in different climate regions of China using genetic algorithm. Journal of Cleaner Production, 333. https://doi.org/10.1016/j.jclepro.2021.130119
  • Ersoy, H. K., and Bilir, N., 2012, Performance characteristics of ejector expander transcritical CO2 refrigeration cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(5), 623–635. https://doi.org/10.1177/0957650912446547
  • European Commission, 2008, Development and demonstration of a prototype transcritical CO2 refrigeration system Final Report.
  • Fricke, B., Zha, S., Sharma, V., Newel, J., and Sharma, V., 2016, Laboratory Evaluation of a Commercial CO2 Booster Refrigeration System Laboratory Evaluation of a Commercial CO2 Booster Refrigeration System. International Refrigeration and Air Conditioning Conference. Paper 1691. http://docs.lib.purdue.edu/iracc/1691
  • Fritschi, H., Tillenkamp, F., Löhrer, R., and Brügger, M., 2017, Efficiency increase in carbon dioxide refrigeration technology with parallel compression. International Journal of Low-Carbon Technologies, 12(2), 171–180. https://doi.org/10.1093/ijlct/ctw002
  • Ge, Y. T., Tassou, S. A., Santosa, I. D., and Tsamos, K., 2015, Design optimisation of CO2 gas cooler/condenser in a refrigeration system. Applied Energy, 160, 973–981. https://doi.org/10.1016/j.apenergy.2015.01.123
  • Goetzler, W., Sutherland, T., Rassi, M., and Burgos, J., 2014, Research and Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants. www.osti.gov/home/
  • Gullo, P., Cortella, G., Minetto, S., and Polzot, A., 2016, Overfed evaporators and parallel compression in commercial R744 booster refrigeration systems - An assessment of energy benefits. Refrigeration Science and Technology, 261–268. https://doi.org/10.18462/iir.gl.2016.1039
  • Gullo, P., and Hafner, A., 2017, Thermodynamic performance assessment of a CO2 supermarket refrigeration system with auxiliary compression economization by using advanced exergy analysis. International Journal of Thermodynamics, 20(4), 220–227. https://doi.org/10.5541/ijot.325883
  • Gullo, P., Hafner, A., and Banasiak, K., 2018, Transcritical R744 refrigeration systems for supermarket applications: Current status and future perspectives. In International Journal of Refrigeration, 93, 269–310. https://doi.org/10.1016/j.ijrefrig.2018.07.001
  • ICF Incorporated, 2020, Supermarket Emission Reduction Analysis.
  • Işık, M., 2022, Thermodynamic Analysis of CO2 Booster Refrigeration Systems of Supermarket Applications for Türkiye [MSc Thesis]. Konya Technical University Graduate Education Institute.
  • Işık, M. and Bilir Sağ, N., 2023, Energetic, economic, and environmental analysis of CO2 booster refrigeration systems of supermarket application for Türkiye. Sadhana, 48, 275, https://doi.org/10.1007/s12046-023-02337-3
  • Karampour, M., and Sawalha, S., 2018, State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. International Journal of Refrigeration, 86, 239–257. https://doi.org/10.1016/j.ijrefrig.2017.11.006
  • Kauf, F., 1999, Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. International Journal of Thermal Sciences, 38, 325–330.
  • Lata, M., and Gupta, D. K., 2020, Performance evaluation and comparative analysis of trans-critical CO2 booster refrigeration systems with modified evaporative cooled gas cooler for supermarket application in Indian context. International Journal of Refrigeration, 120, 248–259. https://doi.org/10.1016/j.ijrefrig.2020.08.004
  • Lata, M., Purohit, N., and Gupta, D. K., 2021, Techno-economic assessment of trans-critical CO2 booster system with modified evaporative cooling for supermarket application in Indian context. Environmental Progress and Sustainable Energy, 40(2). https://doi.org/10.1002/ep.13551
  • Liao, S. M., Zhao, T. S., and Jakobsen, A., 2000, A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Applied Thermal Engineering. www.elsevier.com/locate/apthermeng
  • Llopis, R., Cabello, R., Sánchez, D., and Torrella, E., 2015, Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling. International Journal of Refrigeration, 55, 129–141. https://doi.org/10.1016/j.ijrefrig.2015.03.016
  • Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., and Torrella, E., 2015, Experimental evaluation of an internal heat exchanger in a CO2 subcritical refrigeration cycle with gas-cooler. Applied Thermal Engineering, 80, 31–41.https://doi.org/10.1016/j.applthermaleng.2015.01.040
  • Mitsopoulos, G., Syngounas, E., Tsimpoukis, D., Bellos, E., Tzivanidis, C., and Anagnostatos, S., 2019, Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant. Energy Conversion and Management: X, 1. https://doi.org/10.1016/j.ecmx.2019.100006
  • Mylona, Z., Kolokotroni, M., Tsamos, K. M., and Tassou, S. A., 2017, Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application. Energy Procedia, 123, 121–130. https://doi.org/10.1016/j.egypro.2017.07.234
  • Nebot-Andrés, L., Sánchez, D., Calleja-Anta, D., Cabello, R., and Llopis, R., 2021, Experimental determination of the optimum intermediate and gas-cooler pressures of a commercial transcritical CO2 refrigeration plant with parallel compression. Applied Thermal Engineering, 189. https://doi.org/10.1016/j.applthermaleng.2021.116671
  • Özgür, A. E., Bayrakçı, H. C., and Akdağ, A. E., 2009, Kritik Nokta Üstü Çevrimli CO2 Soğutma Sistemlerinde Optimum Gaz Soğutucu Basıncı: Yeni Bir Korelasyon The Optimum Gas Cooler Pressure for Transcritical CO2 Refrigeration Cycle: a New Correlation. J. of Thermal Science and Technology, 29, 23–28.
  • Purohit, N., Gupta, D. K., and Dasgupta, M. S., 2017, Energetic and economic analysis of trans-critical CO2 booster system for refrigeration in warm climatic condition. International Journal of Refrigeration, 80, 182–196. https://doi.org/10.1016/j.ijrefrig.2017.04.023
  • Republic of Türkiye Ministry of Environment Urbanization and Climate Change, 2022, Montreal Protocol. https://iklim.csb.gov.tr/montreal-protokolu-i-4364
  • Sacasas, D., Vega, J., and Cuevas, C., 2022, An annual energetic evaluation of booster and parallel refrigeration systems with R744 in food retail supermarkets. A Chilean perspective. International Journal of Refrigeration, 133, 326–336. https://doi.org/10.1016/j.ijrefrig.2021.10.010
  • Sarkar, J., and Agrawal, N., 2010, Performance optimization of transcritical CO2 cycle with parallel compression economization. International Journal of Thermal Sciences, 49(5), 838–843. https://doi.org/10.1016/j.ijthermalsci.2009.12.001
  • Sawalha, S., 2008a, Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions. International Journal of Refrigeration, 31(3), 516–524. https://doi.org/10.1016/j.ijrefrig.2007.05.017
  • Sawalha, S., 2008b, Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part II: System modifications and comparisons of different solutions. International Journal of Refrigeration, 31(3), 525–534. https://doi.org/10.1016/j.ijrefrig.2007.05.018
  • Sooben, D., Purohit, N., Mohee, R., Meunier, F., and Dasgupta, M. S., 2019, R744 refrigeration as an alternative for the supermarket sector in small tropical island developing states: The case of Mauritius. International Journal of Refrigeration, 103, 264–273. https://doi.org/10.1016/j.ijrefrig.2019.03.034
  • Sun, Z., Li, J., Liang, Y., Sun, H., Liu, S., Yang, L., Wang, C., and Dai, B., 2020, Performance assessment of CO2 supermarket refrigeration system in different climate zones of China. Energy Conversion and Management, 208. https://doi.org/10.1016/j.enconman.2020.112572
  • Tsamos, K. M., Ge, Y. T., Santosa, Id., Tassou, S. A., Bianchi, G., and Mylona, Z., 2017, Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates. Energy Conversion and Management, 150, 822–829. https://doi.org/10.1016/j.enconman.2017.03.020
  • Turkish State Meteorological Service, 2021, Meteorological Data.
  • Turkish State Meteorological Service, 2022, Climate Assessment of 2021. https://www.mgm.gov.tr

TÜRKİYE'DEKİ SÜPERMARKETLER İÇİN YAŞ EVAPORATÖRLÜ VE PARALEL KOMPRESÖRLÜ CO2 BOOSTER SOĞUTMA ÇEVRİMLERİNİN ENERJİ VE ÇEVRE ANALİZİ

Year 2024, , 17 - 31, 03.06.2024
https://doi.org/10.47480/isibted.1493766

Abstract

CO2 booster soğutma sistemleri yüksek enerji verimliliğine sahip olup çevre dostudur. Bu nedenle, bu çalışmada süpermarketler için CO2 akışkanlı yaş evaporatörlü ve paralel kompresörlü soğutma çevrimi (BFP), BFP’ye mekanik aşırı soğutma eklenen soğutma çevrimi (BFP-MSC) ve BFP’de buharlaşmalı soğutma kullanılan soğutma çevrimi (BFP-EVC) incelenmiştir. Bu sistemler analiz edilerek enerji ve çevre performansı açısından hangi sistemin daha iyi performans gösterdiği literatürde ilk kez Türkiye'deki süpermarketler için ortaya konulmuştur. Araştırma sonuçlara göre, BFP-MSC’nin aynı kuru termometre sıcaklıklarında BFP'ye göre %16.67'ye kadar daha yüksek soğutma performans katsayısına (COP) sahip olduğu belirlenmiştir. Bunun yanı sıra, her şehirde BFP-EVC, en düşük yıllık enerji tüketimine (AEC) sahiptir, onu BFP-MSC ve ardından BFP takip etmektedir. BFP-EVC'nin BFP'ye göre sağladığı yıllık tasarruf %10.81 ile %25.47 arasında değişmektedir. Ek olarak, BFP-EVC, yaş termometre sıcaklıklarına bağlı olarak analiz edildiği için, nem oranının düşük olduğu şehirlerde daha yüksek tasarruflar sağlamaktadır.

References

  • Amaris, C., Tsamos, K. M., and Tassou, S. A., 2019, Analysis of an R744 typical booster configuration, an R744 parallel-compressor booster configuration and an R717/R744 cascade refrigeration system for retail food applications. Part 1: Thermodynamic analysis. Energy Procedia, 161, 259–267. https://doi.org/10.1016/j.egypro.2019.02.090
  • Atmaca, A. U., Erek, A., Ekren, O., and Çoban, M. T., 2018, Thermodynamic Performance of the Transcritical Refrigeration Cycle with Ejector Expansion for R744, R170, and R41. J. of Thermal Science and Technology, 38, 111–127.
  • Bayrakçı, H. C., Özgür, A. E., and Alan, A., 2014, Çift Kademeli Transkritik R744 Soğutma Sistemlerinde Genleşme Türbini Kullanımının Termodinamik Analizi. J. of Thermal Science and Technology, 34, 91–97.
  • Caliskan, O., and Ersoy, H. K., 2022, Energy analysis and performance comparison of transcritical CO2 supermarket refrigeration cycles. The Journal of Supercritical Fluids, 189, 105698. https://doi.org/10.1016/j.supflu.2022.105698
  • Chesi, A., Esposito, F., Ferrara, G., and Ferrari, L., 2014, Experimental analysis of R744 parallel compression cycle. Applied Energy, 135, 274–285. https://doi.org/10.1016/j.apenergy.2014.08.087
  • Cui, Q., Gao, E., Zhang, Z., and Zhang, X., 2020, Preliminary study on the feasibility assessment of CO2 booster refrigeration systems for supermarket application in China: An energetic, economic, and environmental analysis. Energy Conversion and Management, 225. https://doi.org/10.1016/j.enconman.2020.113422
  • Dai, B., Cao, Y., Liu, S., Ji, Y., Sun, Z., Xu, T., Zhang, P., and Nian, V., 2022, Annual energetic evaluation of multi-stage dedicated mechanical subcooling carbon dioxide supermarket refrigeration system in different climate regions of China using genetic algorithm. Journal of Cleaner Production, 333. https://doi.org/10.1016/j.jclepro.2021.130119
  • Ersoy, H. K., and Bilir, N., 2012, Performance characteristics of ejector expander transcritical CO2 refrigeration cycle. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 226(5), 623–635. https://doi.org/10.1177/0957650912446547
  • European Commission, 2008, Development and demonstration of a prototype transcritical CO2 refrigeration system Final Report.
  • Fricke, B., Zha, S., Sharma, V., Newel, J., and Sharma, V., 2016, Laboratory Evaluation of a Commercial CO2 Booster Refrigeration System Laboratory Evaluation of a Commercial CO2 Booster Refrigeration System. International Refrigeration and Air Conditioning Conference. Paper 1691. http://docs.lib.purdue.edu/iracc/1691
  • Fritschi, H., Tillenkamp, F., Löhrer, R., and Brügger, M., 2017, Efficiency increase in carbon dioxide refrigeration technology with parallel compression. International Journal of Low-Carbon Technologies, 12(2), 171–180. https://doi.org/10.1093/ijlct/ctw002
  • Ge, Y. T., Tassou, S. A., Santosa, I. D., and Tsamos, K., 2015, Design optimisation of CO2 gas cooler/condenser in a refrigeration system. Applied Energy, 160, 973–981. https://doi.org/10.1016/j.apenergy.2015.01.123
  • Goetzler, W., Sutherland, T., Rassi, M., and Burgos, J., 2014, Research and Development Roadmap for Next-Generation Low Global Warming Potential Refrigerants. www.osti.gov/home/
  • Gullo, P., Cortella, G., Minetto, S., and Polzot, A., 2016, Overfed evaporators and parallel compression in commercial R744 booster refrigeration systems - An assessment of energy benefits. Refrigeration Science and Technology, 261–268. https://doi.org/10.18462/iir.gl.2016.1039
  • Gullo, P., and Hafner, A., 2017, Thermodynamic performance assessment of a CO2 supermarket refrigeration system with auxiliary compression economization by using advanced exergy analysis. International Journal of Thermodynamics, 20(4), 220–227. https://doi.org/10.5541/ijot.325883
  • Gullo, P., Hafner, A., and Banasiak, K., 2018, Transcritical R744 refrigeration systems for supermarket applications: Current status and future perspectives. In International Journal of Refrigeration, 93, 269–310. https://doi.org/10.1016/j.ijrefrig.2018.07.001
  • ICF Incorporated, 2020, Supermarket Emission Reduction Analysis.
  • Işık, M., 2022, Thermodynamic Analysis of CO2 Booster Refrigeration Systems of Supermarket Applications for Türkiye [MSc Thesis]. Konya Technical University Graduate Education Institute.
  • Işık, M. and Bilir Sağ, N., 2023, Energetic, economic, and environmental analysis of CO2 booster refrigeration systems of supermarket application for Türkiye. Sadhana, 48, 275, https://doi.org/10.1007/s12046-023-02337-3
  • Karampour, M., and Sawalha, S., 2018, State-of-the-art integrated CO2 refrigeration system for supermarkets: A comparative analysis. International Journal of Refrigeration, 86, 239–257. https://doi.org/10.1016/j.ijrefrig.2017.11.006
  • Kauf, F., 1999, Determination of the optimum high pressure for transcritical CO2-refrigeration cycles. International Journal of Thermal Sciences, 38, 325–330.
  • Lata, M., and Gupta, D. K., 2020, Performance evaluation and comparative analysis of trans-critical CO2 booster refrigeration systems with modified evaporative cooled gas cooler for supermarket application in Indian context. International Journal of Refrigeration, 120, 248–259. https://doi.org/10.1016/j.ijrefrig.2020.08.004
  • Lata, M., Purohit, N., and Gupta, D. K., 2021, Techno-economic assessment of trans-critical CO2 booster system with modified evaporative cooling for supermarket application in Indian context. Environmental Progress and Sustainable Energy, 40(2). https://doi.org/10.1002/ep.13551
  • Liao, S. M., Zhao, T. S., and Jakobsen, A., 2000, A correlation of optimal heat rejection pressures in transcritical carbon dioxide cycles. Applied Thermal Engineering. www.elsevier.com/locate/apthermeng
  • Llopis, R., Cabello, R., Sánchez, D., and Torrella, E., 2015, Energy improvements of CO2 transcritical refrigeration cycles using dedicated mechanical subcooling. International Journal of Refrigeration, 55, 129–141. https://doi.org/10.1016/j.ijrefrig.2015.03.016
  • Llopis, R., Sanz-Kock, C., Cabello, R., Sánchez, D., and Torrella, E., 2015, Experimental evaluation of an internal heat exchanger in a CO2 subcritical refrigeration cycle with gas-cooler. Applied Thermal Engineering, 80, 31–41.https://doi.org/10.1016/j.applthermaleng.2015.01.040
  • Mitsopoulos, G., Syngounas, E., Tsimpoukis, D., Bellos, E., Tzivanidis, C., and Anagnostatos, S., 2019, Annual performance of a supermarket refrigeration system using different configurations with CO2 refrigerant. Energy Conversion and Management: X, 1. https://doi.org/10.1016/j.ecmx.2019.100006
  • Mylona, Z., Kolokotroni, M., Tsamos, K. M., and Tassou, S. A., 2017, Comparative analysis on the energy use and environmental impact of different refrigeration systems for frozen food supermarket application. Energy Procedia, 123, 121–130. https://doi.org/10.1016/j.egypro.2017.07.234
  • Nebot-Andrés, L., Sánchez, D., Calleja-Anta, D., Cabello, R., and Llopis, R., 2021, Experimental determination of the optimum intermediate and gas-cooler pressures of a commercial transcritical CO2 refrigeration plant with parallel compression. Applied Thermal Engineering, 189. https://doi.org/10.1016/j.applthermaleng.2021.116671
  • Özgür, A. E., Bayrakçı, H. C., and Akdağ, A. E., 2009, Kritik Nokta Üstü Çevrimli CO2 Soğutma Sistemlerinde Optimum Gaz Soğutucu Basıncı: Yeni Bir Korelasyon The Optimum Gas Cooler Pressure for Transcritical CO2 Refrigeration Cycle: a New Correlation. J. of Thermal Science and Technology, 29, 23–28.
  • Purohit, N., Gupta, D. K., and Dasgupta, M. S., 2017, Energetic and economic analysis of trans-critical CO2 booster system for refrigeration in warm climatic condition. International Journal of Refrigeration, 80, 182–196. https://doi.org/10.1016/j.ijrefrig.2017.04.023
  • Republic of Türkiye Ministry of Environment Urbanization and Climate Change, 2022, Montreal Protocol. https://iklim.csb.gov.tr/montreal-protokolu-i-4364
  • Sacasas, D., Vega, J., and Cuevas, C., 2022, An annual energetic evaluation of booster and parallel refrigeration systems with R744 in food retail supermarkets. A Chilean perspective. International Journal of Refrigeration, 133, 326–336. https://doi.org/10.1016/j.ijrefrig.2021.10.010
  • Sarkar, J., and Agrawal, N., 2010, Performance optimization of transcritical CO2 cycle with parallel compression economization. International Journal of Thermal Sciences, 49(5), 838–843. https://doi.org/10.1016/j.ijthermalsci.2009.12.001
  • Sawalha, S., 2008a, Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part I: Modeling, simulation and optimization of two system solutions. International Journal of Refrigeration, 31(3), 516–524. https://doi.org/10.1016/j.ijrefrig.2007.05.017
  • Sawalha, S., 2008b, Theoretical evaluation of trans-critical CO2 systems in supermarket refrigeration. Part II: System modifications and comparisons of different solutions. International Journal of Refrigeration, 31(3), 525–534. https://doi.org/10.1016/j.ijrefrig.2007.05.018
  • Sooben, D., Purohit, N., Mohee, R., Meunier, F., and Dasgupta, M. S., 2019, R744 refrigeration as an alternative for the supermarket sector in small tropical island developing states: The case of Mauritius. International Journal of Refrigeration, 103, 264–273. https://doi.org/10.1016/j.ijrefrig.2019.03.034
  • Sun, Z., Li, J., Liang, Y., Sun, H., Liu, S., Yang, L., Wang, C., and Dai, B., 2020, Performance assessment of CO2 supermarket refrigeration system in different climate zones of China. Energy Conversion and Management, 208. https://doi.org/10.1016/j.enconman.2020.112572
  • Tsamos, K. M., Ge, Y. T., Santosa, Id., Tassou, S. A., Bianchi, G., and Mylona, Z., 2017, Energy analysis of alternative CO2 refrigeration system configurations for retail food applications in moderate and warm climates. Energy Conversion and Management, 150, 822–829. https://doi.org/10.1016/j.enconman.2017.03.020
  • Turkish State Meteorological Service, 2021, Meteorological Data.
  • Turkish State Meteorological Service, 2022, Climate Assessment of 2021. https://www.mgm.gov.tr
There are 41 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Research Article
Authors

Nagihan Bilir Sağ 0000-0001-8410-0268

Metehan Işık

Publication Date June 3, 2024
Published in Issue Year 2024

Cite

APA Bilir Sağ, N., & Işık, M. (2024). ENERGY AND ENVIRONMENTAL ASSESSMENT OF CO2 BOOSTER REFRIGERATION CYCLES WITH FLOODED EVAPORATORS AND PARALLEL COMPRESSOR FOR SUPERMARKETS IN TÜRKİYE. Isı Bilimi Ve Tekniği Dergisi, 44(1), 17-31. https://doi.org/10.47480/isibted.1493766