Theoretical Article
BibTex RIS Cite

GENERALIZED THERMAL OPTIMIZATION METHOD FOR THE PLATE-FIN HEAT SINKS OF HIGH LUMEN LIGHT EMITTING DIODE ARRAYS

Year 2024, , 207 - 215, 03.06.2024
https://doi.org/10.47480/isibted.1494487

Abstract

The performance of high-lumen light-emitting diode (LED) arrays is strongly affected by high temperatures. For better performance, the design of better thermal management techniques is required. In this work, an analytical thermal optimization algorithm for the passive heat sinks of high-lumen LED arrays is presented. With the aid of this algorithm, a broader range of heat sink geometry alternatives can be explored for the identification of the optimal heat sink design. This task is challenging using experimental or numerical techniques. The results demonstrate that the algorithm yields design with a reduction of more than 30% in base temperatures compared to previous heat sink design studies when minimum mass and maximum total efficiency constraints are applied. For devices with high powers, small chip spacing, and space limitations in the horizontal axis where base temperatures cannot be further reduced using these constraints, minimum temperature optimization can result in up to a 17% reduction in base temperatures. This reduction in base temperatures significantly improves the junction temperatures and the overall lighting quality of the LEDs.

References

  • Abdelmlek, K. Ben, Araoud, Z., Charrada, K., Canale, L., Zissis, G., 2015. Experimental study of orientation effects on natural convection around new/old LED package, in: 3ème Conférence Internationale Des Energies Renouvelables.
  • Bar-Cohen, A., Iyengar, M., Kraus, A.D., 2003. Design of optimum plate-fin natural convective heat sinks. J. Electron. Packag. Trans. ASME. https://doi.org/10.1115/1.1568361
  • Bar-Cohen, A., Jelinek, M., 1985. Optimum arrays of longitudinal, rectangular fins in corrective heat transfer. Heat Transf. Eng. https://doi.org/10.1080/01457638508939633
  • Bar-Cohen, A., Rohsenow, W.W., 1984. Thermally optimum spacing of vertical, natural convection cooled, parallel plates. J. Heat Transfer 106. https://doi.org/10.1115/1.3246622
  • Ben Abdelmlek, K., Araoud, Z., Canale, L., Charrada, K., Zissis, G., 2021. Optimal substrate design for thermal management of high power multi-chip LEDs module. Optik (Stuttg). 242, 167179. https://doi.org/https://doi.org/10.1016/j.ijleo.2021.167179
  • Ben Abdelmlek, K., Araoud, Z., Charrada, K., Zissis, G., 2017. Optimization of the thermal distribution of multi-chip LED package. Appl. Therm. Eng. 126, 653–660. https://doi.org/10.1016/J.APPLTHERMALENG.2017.07.136
  • Delendik, K., Kolyago, N., Voitik, O., 2021. Design and investigation of cooling system for high-power LED luminaire. Comput. Math. with Appl. 83, 84–94. https://doi.org/10.1016/J.CAMWA.2020.01.026
  • Deng, Y., Liu, J., 2010. A liquid metal cooling system for the thermal management of high power LEDs. Int. Commun. Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2010.04.011
  • Elenbaas, W., 1948. The dissipation of heat by free convection from vertical and horizontal cylinders. J. Appl. Phys. https://doi.org/10.1063/1.1715035
  • Elenbaas, W., 1942. Heat dissipation of parallel plates by free convection. Physica 9, 1–28. https://doi.org/10.1016/S0031-8914(42)90053-3
  • Feng, S., Shi, M., Yan, H., Sun, S., Li, F., Lu, T.J., 2018. Natural convection in a cross-fin heat sink. Appl. Therm. Eng. 132, 30–37. https://doi.org/10.1016/j.applthermaleng.2017.12.049
  • Ghajar, Cengel, Y.A., Afshin, J., 1986. Heat and Mass Transfer: Fundamentals & Applications, Genetics. https://doi.org/10.1017/CBO9780511676420.004
  • Goshayeshi, H.R., Fahiminia, M., Naserian, M.M., 2011. Numerical modeling of natural convection on various configurationof rectangular fin arrays on vertical base plates. World Acad. Sci. Eng. Technol. https://doi.org/10.5281/zenodo.1055852
  • Hsieh, C.C., Li, Y.H., 2015. The study for saving energy and optimization of led street light heat sink design. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2015/418214
  • Hsu, C.-N., Chen, C.-C., Chang, C.-H., Wang, C.-C., 2020. Using Graphene-powder-based Thermal Interface Material for High Lumen LED Array Chip: An Experimental Study of Heat Dissipation. Sensors \& Mater. 32.
  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007a. Fundamentals of Heat and Mass Transfer 6th Edition, Fundamentals of Heat and Mass Transfer 6th Edition. https://doi.org/10.1016/j.applthermaleng.2011.03.022
  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007b. Fundamentals of Heat and Mass Transfer, Water. https://doi.org/10.1016/j.applthermaleng.2011.03.022
  • Karlicek, R., Sun, C.C., Zissis, G., Ma, R., 2017. Handbook of Advanced Lighting Technology, Handbook of Advanced Lighting Technology. https://doi.org/10.1007/978-3-319-00176-0
  • Kraus, A., Aziz, A., Welty, J., Sekulic, D., 2001. Extended Surface Heat Transfer. Appl. Mech. Rev. https://doi.org/10.1115/1.1399680
  • Lee, H.S., 2010. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. https://doi.org/10.1002/9780470949979
  • Li, J., Ma, B., Wang, R., Han, L., 2011. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab. https://doi.org/10.1016/j.microrel.2011.05.006
  • Liu, Y.B., 2012. On thermal structure optimization of a power LED lighting, in: Procedia Engineering. https://doi.org/10.1016/j.proeng.2012.01.387
  • Lu, X., Hua, T.-C., Wang, Y., 2011. Thermal analysis of high power LED package with heat pipe heat sink. Microelectronics J. https://doi.org/10.1016/j.mejo.2011.08.009
  • Patel, H., Matawala, V.K., 2019. Performance Evaluation and parametric optimization of a Heat Sink for Cooling of Electronic Devices with Entropy Generation Minimization. Eur. J. Sustain. Dev. Res. https://doi.org/10.29333/ejosdr/5896
  • Rammohan, R., Kumar, R., Chandramohan, V.P., 2021. Experimental analysis on estimating junction temperature and service life of high power LED array. Microelectron. Reliab. 120, 114121. https://doi.org/10.1016/J.MICROREL.2021.114121
  • Tang, H., Li, D., Pan, M., Yang, T., Yuan, C., Fan, X., 2015. Thermal analysis and optimization design of LED streetlight module, in: 2013 10th China International Forum on Solid State Lighting, ChinaSSL 2013. https://doi.org/10.1109/SSLCHINA.2013.7177346
  • Walunj, A., Daund, V., Palande, D.D., 2013. Parametric Analysis of Plate-Fin Heat Sink Over Heat Transfer. Int. J. Res. Advent Technol. 1.
  • Wang, J., Zhao, X.J., Cai, Y.X., Zhang, C., Bao, W.W., 2015. Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2015.05.040
  • Ye, H., Sau, K., Van Zeijl, H., Gielen, A.W.J., Zhang, G., 2011. A review of passive thermal management of LED module. J. Semicond. https://doi.org/10.1088/1674-4926/32/1/014008
  • Yüncü, H., Anbar, G., 1998. An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer. Heat Mass Transf. und Stoffuebertragung. https://doi.org/10.1007/s002310050222

YÜKSEK LÜMENLİ IŞIK YAYAN DİYOT DİZİLERİNİN PLAKALI ISI EMİCİLERİ İÇİN GENELLEŞTİRİLMİŞ TERMAL OPTİMİZASYON YÖNTEMİ

Year 2024, , 207 - 215, 03.06.2024
https://doi.org/10.47480/isibted.1494487

Abstract

Yüksek lümenli ışık yayan diyot (LED) dizilerinin performansı, yüksek sıcaklıklardan büyük ölçüde etkilenir. Bu yapıların yüksek performansı için geliştirilmiş termal yönetim tekniklerinin tasarımı gereklidir. Bu çalışmada, yüksek lümenli LED dizilerinin pasif soğutucuları için analitik bir termal optimizasyon algoritması sunulmaktadır. Bu algoritmanın yardımıyla, optimum ısı emici tasarımının belirlenmesi için daha geniş bir yelpazedeki ısı emici geometri alternatifleri araştırılabilir. Kullanılan analitik yaklaşım optimizasyon için kullanımı zor olan deneysel veya sayısal tekniklere alternatif sunmaktadır. Sonuçlar, minimum kütle ve maksimum toplam verimlilik kısıtlamaları ile elde edilen taban sıcaklıklarında önceki ısı emici tasarım çalışmalarına göre %30'dan fazla bir azalma göstermektedir. Yüksek güce, küçük çip aralığına ve bu kısıtlamalar kullanılarak taban sıcaklıklarının daha fazla düşürülemeyeceği yatay eksende alan sınırlamalarına sahip cihazlar için minimum sıcaklık kısıtlaması ile gerçekleştirilen optimizasyon, taban sıcaklıklarında %17'ye kadar bir azalmaya neden olabilir. Taban sıcaklıklarındaki bu azalma, bağlantı sıcaklıklarını ve LED'lerin genel aydınlatma kalitesini önemli ölçüde artırır.

References

  • Abdelmlek, K. Ben, Araoud, Z., Charrada, K., Canale, L., Zissis, G., 2015. Experimental study of orientation effects on natural convection around new/old LED package, in: 3ème Conférence Internationale Des Energies Renouvelables.
  • Bar-Cohen, A., Iyengar, M., Kraus, A.D., 2003. Design of optimum plate-fin natural convective heat sinks. J. Electron. Packag. Trans. ASME. https://doi.org/10.1115/1.1568361
  • Bar-Cohen, A., Jelinek, M., 1985. Optimum arrays of longitudinal, rectangular fins in corrective heat transfer. Heat Transf. Eng. https://doi.org/10.1080/01457638508939633
  • Bar-Cohen, A., Rohsenow, W.W., 1984. Thermally optimum spacing of vertical, natural convection cooled, parallel plates. J. Heat Transfer 106. https://doi.org/10.1115/1.3246622
  • Ben Abdelmlek, K., Araoud, Z., Canale, L., Charrada, K., Zissis, G., 2021. Optimal substrate design for thermal management of high power multi-chip LEDs module. Optik (Stuttg). 242, 167179. https://doi.org/https://doi.org/10.1016/j.ijleo.2021.167179
  • Ben Abdelmlek, K., Araoud, Z., Charrada, K., Zissis, G., 2017. Optimization of the thermal distribution of multi-chip LED package. Appl. Therm. Eng. 126, 653–660. https://doi.org/10.1016/J.APPLTHERMALENG.2017.07.136
  • Delendik, K., Kolyago, N., Voitik, O., 2021. Design and investigation of cooling system for high-power LED luminaire. Comput. Math. with Appl. 83, 84–94. https://doi.org/10.1016/J.CAMWA.2020.01.026
  • Deng, Y., Liu, J., 2010. A liquid metal cooling system for the thermal management of high power LEDs. Int. Commun. Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2010.04.011
  • Elenbaas, W., 1948. The dissipation of heat by free convection from vertical and horizontal cylinders. J. Appl. Phys. https://doi.org/10.1063/1.1715035
  • Elenbaas, W., 1942. Heat dissipation of parallel plates by free convection. Physica 9, 1–28. https://doi.org/10.1016/S0031-8914(42)90053-3
  • Feng, S., Shi, M., Yan, H., Sun, S., Li, F., Lu, T.J., 2018. Natural convection in a cross-fin heat sink. Appl. Therm. Eng. 132, 30–37. https://doi.org/10.1016/j.applthermaleng.2017.12.049
  • Ghajar, Cengel, Y.A., Afshin, J., 1986. Heat and Mass Transfer: Fundamentals & Applications, Genetics. https://doi.org/10.1017/CBO9780511676420.004
  • Goshayeshi, H.R., Fahiminia, M., Naserian, M.M., 2011. Numerical modeling of natural convection on various configurationof rectangular fin arrays on vertical base plates. World Acad. Sci. Eng. Technol. https://doi.org/10.5281/zenodo.1055852
  • Hsieh, C.C., Li, Y.H., 2015. The study for saving energy and optimization of led street light heat sink design. Adv. Mater. Sci. Eng. https://doi.org/10.1155/2015/418214
  • Hsu, C.-N., Chen, C.-C., Chang, C.-H., Wang, C.-C., 2020. Using Graphene-powder-based Thermal Interface Material for High Lumen LED Array Chip: An Experimental Study of Heat Dissipation. Sensors \& Mater. 32.
  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007a. Fundamentals of Heat and Mass Transfer 6th Edition, Fundamentals of Heat and Mass Transfer 6th Edition. https://doi.org/10.1016/j.applthermaleng.2011.03.022
  • Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S., 2007b. Fundamentals of Heat and Mass Transfer, Water. https://doi.org/10.1016/j.applthermaleng.2011.03.022
  • Karlicek, R., Sun, C.C., Zissis, G., Ma, R., 2017. Handbook of Advanced Lighting Technology, Handbook of Advanced Lighting Technology. https://doi.org/10.1007/978-3-319-00176-0
  • Kraus, A., Aziz, A., Welty, J., Sekulic, D., 2001. Extended Surface Heat Transfer. Appl. Mech. Rev. https://doi.org/10.1115/1.1399680
  • Lee, H.S., 2010. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. https://doi.org/10.1002/9780470949979
  • Li, J., Ma, B., Wang, R., Han, L., 2011. Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs. Microelectron. Reliab. https://doi.org/10.1016/j.microrel.2011.05.006
  • Liu, Y.B., 2012. On thermal structure optimization of a power LED lighting, in: Procedia Engineering. https://doi.org/10.1016/j.proeng.2012.01.387
  • Lu, X., Hua, T.-C., Wang, Y., 2011. Thermal analysis of high power LED package with heat pipe heat sink. Microelectronics J. https://doi.org/10.1016/j.mejo.2011.08.009
  • Patel, H., Matawala, V.K., 2019. Performance Evaluation and parametric optimization of a Heat Sink for Cooling of Electronic Devices with Entropy Generation Minimization. Eur. J. Sustain. Dev. Res. https://doi.org/10.29333/ejosdr/5896
  • Rammohan, R., Kumar, R., Chandramohan, V.P., 2021. Experimental analysis on estimating junction temperature and service life of high power LED array. Microelectron. Reliab. 120, 114121. https://doi.org/10.1016/J.MICROREL.2021.114121
  • Tang, H., Li, D., Pan, M., Yang, T., Yuan, C., Fan, X., 2015. Thermal analysis and optimization design of LED streetlight module, in: 2013 10th China International Forum on Solid State Lighting, ChinaSSL 2013. https://doi.org/10.1109/SSLCHINA.2013.7177346
  • Walunj, A., Daund, V., Palande, D.D., 2013. Parametric Analysis of Plate-Fin Heat Sink Over Heat Transfer. Int. J. Res. Advent Technol. 1.
  • Wang, J., Zhao, X.J., Cai, Y.X., Zhang, C., Bao, W.W., 2015. Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package. Energy Convers. Manag. https://doi.org/10.1016/j.enconman.2015.05.040
  • Ye, H., Sau, K., Van Zeijl, H., Gielen, A.W.J., Zhang, G., 2011. A review of passive thermal management of LED module. J. Semicond. https://doi.org/10.1088/1674-4926/32/1/014008
  • Yüncü, H., Anbar, G., 1998. An experimental investigation on performance of rectangular fins on a horizontal base in free convection heat transfer. Heat Mass Transf. und Stoffuebertragung. https://doi.org/10.1007/s002310050222
There are 30 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Research Article
Authors

Haluk Kundakçıoğlu This is me 0000-0002-5239-9995

Fatma Nazlı Dönmezer Akgün 0000-0003-0359-5567

Publication Date June 3, 2024
Published in Issue Year 2024

Cite

APA Kundakçıoğlu, H., & Dönmezer Akgün, F. N. (2024). GENERALIZED THERMAL OPTIMIZATION METHOD FOR THE PLATE-FIN HEAT SINKS OF HIGH LUMEN LIGHT EMITTING DIODE ARRAYS. Isı Bilimi Ve Tekniği Dergisi, 44(1), 207-215. https://doi.org/10.47480/isibted.1494487