Research Article
BibTex RIS Cite

BioPCM entegreli bina bileşenlerinin günlük ısıtma soğutma oranlarına ve lokal ısıl hissiyatlar üzerindeki etkisi

Year 2025, Volume: 45 Issue: 2, 296 - 316, 30.10.2025
https://doi.org/10.47480/isibted.1668591

Abstract

Faz değiştiren malzemeler (FDM) sıcaklık salınımlarını ve ısıtma, soğutma yüklerini azaltırken ısıl konfor koşullarını iyileştirirler. Ancak, bu malzemelerin tüm bina yüzeylerine uygulamasından ziyade, dış mikroiklisel koşullarına daha az maruz kalmalarına neden olacak şekilde, farklı yapı bileşenlerine tekil olarak uygulanması, pik ve geçiş dönemlerinde enerji tüketimi ve lokal ısıl konforsuzluğu arttırabilir. Bu çalışma, her senaryo için eşit miktarda olmak üzere, farklı yapı bileşenlerine uygulanan Fdm malzemesinin bulunduğu yer itibariyle güneş ışınımına maruz kalma durumu göz önüne alınarak, ısıtma soğutma oranlarına ve gün içinde beş zaman aralığında, lokal ısıl konfor seviyelerine etkileri (PMV), tahmin edilen ortalama oy dağılım haritaları ve 9 noktadaki lokal psikolojik stres puanları ile incelenmiştir.

Sonuçlara göre %25 maksimum azaltım sağlayan faz değiştiren malzemeli çatı uygulaması dahil, tüm faz değiştiren malzemeli senaryolar soğutma miktarlarını azaltmıştır. Sadece FDM entegreli doğu ve batı duvarları, ve çatı uygulamaları, ısıl hissiyatta çok küçük iyileştirmeyle, ısıtmada gözle görülür azaltım sağlamıştır. FDM nin doğu duvarında uygulandığı senaryo ile en yüksek lokal psikolojik stres puanları elde edilmiştir. Malzemenin güney cephesine uygulandığı senaryoda kullanıcı ısıl stres değerlerinin minimum seviyelere inmesi, ancak belirgin farklar gözlenmemesi yapı kabuğunda bütüncül olarak FDM entegre edilmesinden ziyade, tüm senaryolarda eşit miktarda, ancak yetersiz yüzey alanına BioPCM uygulanmasına dayanmaktadır.

References

  • Adekunle, T. O., Nikolopoulou, M. (2019). Winter performance, occupants’ comfort, and cold stress in prefabricated timber buildings. Building and Environment, 149, 220–240.
  • Adilkhanova, I., Memon, S. A., Kim, J., Sheriyev A (2021). A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, 217,119390.
  • Ahangari, M., Maerefat, M. (2019). An innovative PCM system for thermal comfort improvement and energy demand reduction in buildings under different climate conditions. Sustain Cities and Society, 44,120–129.
  • Alharbey, R. A., Daqrouq, K. O., Alkhateeb, A., et al. (2022). Energy exchange is achieved by inserting eco-friendly bio-phase change material into the vertical walls to make the buildings energy-efficient. Journal of Building Engineering. 56,104777.
  • Aridi, R., Yehya, A. (2022). Review the sustainability of phase-change materials used in buildings. Energy Conversion and Management: X,15,100237.
  • Baniassadi, A., Sailor, D.J., Bryan, H.J., et al. (2019). Effectiveness of phase change materials for improving the resiliency of residential buildings to extreme thermal conditions. Solar Energy, 188, 190–199.
  • Bejan, A. S., Catalina, T. (2016). The implementation of phase-changing materials in energy-efficient buildings. Case study: EFdeN project. Energy Procedia, 85, 52–59.
  • Berardi, U., Manca, M. (2017). The energy saving and indoor comfort improvements with latent thermal energy storage in building retrofits in Canada. Energy Procedia, 111, 462–471.
  • BioPCM. (2020) BioPCM data sheet Q23. Retrieved August 16,2024, from https://phasechange.com/wpcontent/uploads/2020/08/BioPCM-Data-Sheet-Q23.pdf.
  • Bohórquez-Órdenes, J., Tapia-Calderón, A., Vasco, D. A., et al. (2021). Methodology to reduce cooling energy consumption by incorporating PCM envelopes: A case study of a dwelling in Chile. Building and Environment, 206, 108373.
  • Cárdenas-Ramírez C., Jaramillo, F., Gómez, M., et al. (2020). A systematic review of encapsulation and shape-stabilization of phase change materials. J Energy Storage. 30, 101495.
  • Casini, M. (2016). Smart Buildings: Advanced Materials and Nanotechnology to Improve Energy Efficiency and Environmental Performance. Woodhead publishing. pp.179–216.
  • Costanzo, V., Evola, G., Marletta, L., et al. (2018). The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings. Building Simulation,11(6),1145–1161.
  • De Masi, R. F., Gigante, A., Vanoli, G. P. (2020). Numerical analysis of phase change materials for optimizing the energy balance of a nearly zero energy building. Sustainable Cities and Society, 63,102441.
  • Dincer, I., Rosen, M. A. (2011). Thermal Energy Storage: Systems and Applications. 2nd ed. United Kingdom: Wiley.
  • Evola, G., Marletta, L., Sicurella, F., et al. (2014). Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings. Energy and Buildings, 70, 480–489.
  • Fabiani, C., Pisello, A. L., Barbanera, M., et al. (2020). Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. Journal of Energy Storage, 28, 101129. Figueiredo, A., Vicente, R., Lapa, J., et al. (2017). Indoor thermal comfort assessment using different constructive solutions incorporating PCM. Applied Energy, 208,1208–1221.
  • Ghani, S., Mahgoub, A.O., Bakochristou, F., et al. (2021). Assessment of thermal comfort indices in an open air-conditioned stadium in a hot and arid environment. Journal of Building Engineering, 40,102378.
  • Turkish State Meteorological Service. (2024). Heating and cooling degree days of Kocaeli. Retrieved April 9, 2024, from https://www.mgm.gov.tr/veridegerlendirme/gun-derece.aspx?g=merkez&m=41-00&y=2024&a=02.
  • Kuczyński, T., Staszczuk, A. (2020). Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings. Energy., 195, 116984. Kuznik, F., Virgone, J., Johannes K, et al. (2011). In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renewable Energy., 36(5), 1458–1466.
  • Matzarakis, A., Mayer, H., Iziomon, M. G., et al. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2),76–84.
  • Nghana, B., Tariku, F. (2016). P hase change material (PCM) impacts buildings' energy performance and thermal comfort in a mild climate. Building and Environment, 99, 221–238.
  • Oral, G. K., Yilmaz, Z. (2002). The limit U values for building envelope related to building form in temperate and cold climatic zones. Building and Environment, 37, 117–125. Qu, Y., Zhou, D., Xue, F., et al. (2021). Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer. Energy and Buildings, 241, 110966.
  • Raftery, P., Keane, M., Costa, A., et al. (2011). Calibrating whole building energy models: Detailed case study using hourly measured data. Energy and Buildings., 43(12), 3666–3679.
  • Rathore, P. K. S., Shukla, S. K. (2019). The potential of microencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials, 225, 723–744.
  • Saffari, M., de Gracia, A., Ushak, S., et al. (2016). The economic impact of integrating PCM as a passive system in buildings using the Fanger comfort model. Energy and Buildings, 112, 159–172.
  • Socaciu, L. G. (2012). Thermal energy storage with phase change material. Leonardo Electronic Journal of Practices and Technologies, 11, 75–98.
  • Staszczuk, A., Kuczyński, T. (2021). The impact of wall and roof material on the summer thermal performance of the building in a temperate climate. Energy, 228, 120482.
  • Tunçbilek, E., Arıcı, M., Bouadila, S., et al. (2020). Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of the Marmara region. Journal of Thermal Analysis and Calorimetry, 141(1), 613–624.
  • Turkish Standards Institution. (2025). TS825: Thermal Insulation Requirements for Buildings. Ankara.
  • U.S. Department of Energy. EnergyPlus™ Version 22.1.0 Documentation. Engineering Reference. March 2022.
  • Vicente, R., Silva, T. (2014). Brick masonry walls with PCM microcapsules: An experimental approach. Applied Thermal Engineering, 67, 24–34.
  • Vik, T. A., Madessa, H. B., Aslaksrud, P., et al. (2017). Thermal performance of an office cubicle integrated with a bio-based PCM: Experimental analyses. Energy Procedia., 111, 609–618.
  • Wijesuriya, S., Brandt, M., Tabares-Velasco, P. C., et al. (2018). Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate. Applied Energy, 222, 497–514.
  • Yadav, A., Samykano, M., Pandey, A. K., et al. (2023). A systematic review on bio-based phase change materials. International Journal of Automotive and Mechanical Engineering, 20(2), 10547–10558.

Effect of BioPCM-Integrated Building Components on Diurnal Heating-Cooling Rates and Local Thermal Sensations

Year 2025, Volume: 45 Issue: 2, 296 - 316, 30.10.2025
https://doi.org/10.47480/isibted.1668591

Abstract

Phase change materials (PCMs) reduce temperature fluctuations and heating-cooling loads while improving thermal comfort in buildings. However, instead of applying it to the total building envelope, using it on different building components individually with lesser exposure to the outer microclimate may increase energy consumption and local thermal discomfort during peak and transition periods. This study investigates the effect of bioPCM-integrated building components with an equal Pcm applied surface area for each scenario, considering their exposure to solar radiation with their location, on diurnal heating-cooling rates and local thermal comfort, by predicted mean vote (PMV) maps and local physiological stress grades at nine locations over five diurnal time intervals. The focus is on the hottest and transition periods under humid-temperate climate conditions.

According to the results, all scenarios mitigated cooling rates, with a maximum reduction of 25% achieved by the PCM-applied roof scenario. Only bioPCM-integrated east-west walls and the roof notably reduced heating, with modest enhancements to thermal sensation. The highest local physiological stress grades occurred with East-wall BioPCM. The south wall BioPCM scenario minimized thermal stress without evident differences in thermal stress sensations among the occupants primarily due to equal but insufficient BioPCM-applied surface area compared to the overall application.

Ethical Statement

As the author(s), we declare that this application has been approved by all authors, and the manuscript is an unpublished and original work; it has not been submitted to nor under the review process of another journal.

References

  • Adekunle, T. O., Nikolopoulou, M. (2019). Winter performance, occupants’ comfort, and cold stress in prefabricated timber buildings. Building and Environment, 149, 220–240.
  • Adilkhanova, I., Memon, S. A., Kim, J., Sheriyev A (2021). A novel approach to investigate the thermal comfort of the lightweight relocatable building integrated with PCM in different climates of Kazakhstan during summertime. Energy, 217,119390.
  • Ahangari, M., Maerefat, M. (2019). An innovative PCM system for thermal comfort improvement and energy demand reduction in buildings under different climate conditions. Sustain Cities and Society, 44,120–129.
  • Alharbey, R. A., Daqrouq, K. O., Alkhateeb, A., et al. (2022). Energy exchange is achieved by inserting eco-friendly bio-phase change material into the vertical walls to make the buildings energy-efficient. Journal of Building Engineering. 56,104777.
  • Aridi, R., Yehya, A. (2022). Review the sustainability of phase-change materials used in buildings. Energy Conversion and Management: X,15,100237.
  • Baniassadi, A., Sailor, D.J., Bryan, H.J., et al. (2019). Effectiveness of phase change materials for improving the resiliency of residential buildings to extreme thermal conditions. Solar Energy, 188, 190–199.
  • Bejan, A. S., Catalina, T. (2016). The implementation of phase-changing materials in energy-efficient buildings. Case study: EFdeN project. Energy Procedia, 85, 52–59.
  • Berardi, U., Manca, M. (2017). The energy saving and indoor comfort improvements with latent thermal energy storage in building retrofits in Canada. Energy Procedia, 111, 462–471.
  • BioPCM. (2020) BioPCM data sheet Q23. Retrieved August 16,2024, from https://phasechange.com/wpcontent/uploads/2020/08/BioPCM-Data-Sheet-Q23.pdf.
  • Bohórquez-Órdenes, J., Tapia-Calderón, A., Vasco, D. A., et al. (2021). Methodology to reduce cooling energy consumption by incorporating PCM envelopes: A case study of a dwelling in Chile. Building and Environment, 206, 108373.
  • Cárdenas-Ramírez C., Jaramillo, F., Gómez, M., et al. (2020). A systematic review of encapsulation and shape-stabilization of phase change materials. J Energy Storage. 30, 101495.
  • Casini, M. (2016). Smart Buildings: Advanced Materials and Nanotechnology to Improve Energy Efficiency and Environmental Performance. Woodhead publishing. pp.179–216.
  • Costanzo, V., Evola, G., Marletta, L., et al. (2018). The effectiveness of phase change materials in relation to summer thermal comfort in air-conditioned office buildings. Building Simulation,11(6),1145–1161.
  • De Masi, R. F., Gigante, A., Vanoli, G. P. (2020). Numerical analysis of phase change materials for optimizing the energy balance of a nearly zero energy building. Sustainable Cities and Society, 63,102441.
  • Dincer, I., Rosen, M. A. (2011). Thermal Energy Storage: Systems and Applications. 2nd ed. United Kingdom: Wiley.
  • Evola, G., Marletta, L., Sicurella, F., et al. (2014). Simulation of a ventilated cavity to enhance the effectiveness of PCM wallboards for summer thermal comfort in buildings. Energy and Buildings, 70, 480–489.
  • Fabiani, C., Pisello, A. L., Barbanera, M., et al. (2020). Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. Journal of Energy Storage, 28, 101129. Figueiredo, A., Vicente, R., Lapa, J., et al. (2017). Indoor thermal comfort assessment using different constructive solutions incorporating PCM. Applied Energy, 208,1208–1221.
  • Ghani, S., Mahgoub, A.O., Bakochristou, F., et al. (2021). Assessment of thermal comfort indices in an open air-conditioned stadium in a hot and arid environment. Journal of Building Engineering, 40,102378.
  • Turkish State Meteorological Service. (2024). Heating and cooling degree days of Kocaeli. Retrieved April 9, 2024, from https://www.mgm.gov.tr/veridegerlendirme/gun-derece.aspx?g=merkez&m=41-00&y=2024&a=02.
  • Kuczyński, T., Staszczuk, A. (2020). Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings. Energy., 195, 116984. Kuznik, F., Virgone, J., Johannes K, et al. (2011). In-situ study of thermal comfort enhancement in a renovated building equipped with phase change material wallboard. Renewable Energy., 36(5), 1458–1466.
  • Matzarakis, A., Mayer, H., Iziomon, M. G., et al. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43(2),76–84.
  • Nghana, B., Tariku, F. (2016). P hase change material (PCM) impacts buildings' energy performance and thermal comfort in a mild climate. Building and Environment, 99, 221–238.
  • Oral, G. K., Yilmaz, Z. (2002). The limit U values for building envelope related to building form in temperate and cold climatic zones. Building and Environment, 37, 117–125. Qu, Y., Zhou, D., Xue, F., et al. (2021). Multi-factor analysis on thermal comfort and energy saving potential for PCM-integrated buildings in summer. Energy and Buildings, 241, 110966.
  • Raftery, P., Keane, M., Costa, A., et al. (2011). Calibrating whole building energy models: Detailed case study using hourly measured data. Energy and Buildings., 43(12), 3666–3679.
  • Rathore, P. K. S., Shukla, S. K. (2019). The potential of microencapsulated PCM for thermal energy storage in buildings: A comprehensive review. Construction and Building Materials, 225, 723–744.
  • Saffari, M., de Gracia, A., Ushak, S., et al. (2016). The economic impact of integrating PCM as a passive system in buildings using the Fanger comfort model. Energy and Buildings, 112, 159–172.
  • Socaciu, L. G. (2012). Thermal energy storage with phase change material. Leonardo Electronic Journal of Practices and Technologies, 11, 75–98.
  • Staszczuk, A., Kuczyński, T. (2021). The impact of wall and roof material on the summer thermal performance of the building in a temperate climate. Energy, 228, 120482.
  • Tunçbilek, E., Arıcı, M., Bouadila, S., et al. (2020). Seasonal and annual performance analysis of PCM-integrated building brick under the climatic conditions of the Marmara region. Journal of Thermal Analysis and Calorimetry, 141(1), 613–624.
  • Turkish Standards Institution. (2025). TS825: Thermal Insulation Requirements for Buildings. Ankara.
  • U.S. Department of Energy. EnergyPlus™ Version 22.1.0 Documentation. Engineering Reference. March 2022.
  • Vicente, R., Silva, T. (2014). Brick masonry walls with PCM microcapsules: An experimental approach. Applied Thermal Engineering, 67, 24–34.
  • Vik, T. A., Madessa, H. B., Aslaksrud, P., et al. (2017). Thermal performance of an office cubicle integrated with a bio-based PCM: Experimental analyses. Energy Procedia., 111, 609–618.
  • Wijesuriya, S., Brandt, M., Tabares-Velasco, P. C., et al. (2018). Parametric analysis of a residential building with phase change material (PCM)-enhanced drywall, precooling, and variable electric rates in a hot and dry climate. Applied Energy, 222, 497–514.
  • Yadav, A., Samykano, M., Pandey, A. K., et al. (2023). A systematic review on bio-based phase change materials. International Journal of Automotive and Mechanical Engineering, 20(2), 10547–10558.
There are 35 citations in total.

Details

Primary Language English
Subjects Building Physics
Journal Section Research Article
Authors

Neslihan Türkmenoğlu Bayraktar 0000-0003-0059-5721

Merve Kılınç Gilisıralıoğlu 0000-0002-5390-843X

Submission Date March 31, 2025
Acceptance Date August 19, 2025
Publication Date October 30, 2025
Published in Issue Year 2025 Volume: 45 Issue: 2

Cite

APA Türkmenoğlu Bayraktar, N., & Kılınç Gilisıralıoğlu, M. (2025). Effect of BioPCM-Integrated Building Components on Diurnal Heating-Cooling Rates and Local Thermal Sensations. Isı Bilimi Ve Tekniği Dergisi, 45(2), 296-316. https://doi.org/10.47480/isibted.1668591