Research Article
BibTex RIS Cite

T56 TURBOPROP MOTORUNUN FARKLI YÜK KOŞULLARI ALTINDA TERMOEKONOMİK ANALİZİ

Year 2020, , 251 - 265, 31.10.2020
https://doi.org/10.47480/isibted.817013

Abstract

Bu çalışmada, T56 turboprop motor %75, %100, askeri (MIL) ve kalkış (Take-off) yük koşulları için teorik olarak modellenmiştir. Her bir yük koşulunda, şaft işinin ve itme kuvvetinin birim maliyetlerinin ayrıklaştırılması ve sistem ekipmanlarının ekserji yıkım maliyetlerinin belirlenmesi için T56 turboprop motorun termoekonomik analizleri gerçekleştirilmiştir. Termoekonomik analizlerde, Specific Exergy Costing (SPECO) ve Modified Productive Structure Analysis (MOPSA) metotları kullanılmıştır. MOPSA metodu şaft işi ve itki kuvveti için SPECO metoduna kıyasla daha yüksek birim maliyetler vermektedir. Sonuç olarak, kalkış modu için, pervaneye iletilen şaft işinin birim maliyeti MOPSA metodu ile 84.68 $/GJ olarak hesaplanırken, SPECO metodunda 78.87 $/GJ olarak belirlenmiştir. T56 turboprop motorun negentropi birim maliyeti motor yükünün artmasıyla azalmaktadır ve 14.98 $/GJ’den 11.08 $/GJ’e kadar sıralanmaktadır. Sistem ekipmanları için MOPSA metodu ile elde edilen ekserji yıkımı maliyetleri SPECO metodu ile elde edilen sonuçlardan oldukça düşüktür. Örneğin, kalkış modu için, yanma odasının ekserji yıkımı maliyeti SPECO metodunda 865.10 $/h olarak hesaplanmıştır, oysa bu değer MOPSA metodunda 247.94 $/h olarak hesaplanmıştır. Toplam sistemin ekserjoekonomik faktörü, kalkış modu için, SPECO metodunda %23.07 ve MOPSA metodunda %54.16 olarak belirlenmiştir

References

  • Altuntas, O., Karakoc, T. H. and Hepbasli, A., 2012, Exergetic, exergoeconomic and sustainability assessment of piston-prop aircraft engine. Int J Therm Sci Technol, 32, 133-43.
  • Aksu, B., 2019, Thermoeconomic Analysis Of A Water To Water Heat Pump Under Different Condenser And Evaporator Conditions. Journal of Thermal Engineering, 5(3), 198-209.
  • Balle, J.K.O., 2016, About the Rolls-Royce T56, Forecast International.
  • Balli, O., 2019, Thermodynamic, thermoeconomic and environmental performance analyses of a high bypass turbofan engine used on commercial aircrafts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 453-461.
  • Balli, O., Aras, H., Aras, N. and Hepbasli, A., 2008, Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). International Journal of Exergy, 5(5), 567.
  • Balli, O. and Hepbasli, A., 2013, Energetic and exergetic analyses of T56 turboprop engine. Energy conversion and management, 73, 106-120.
  • Balli, O. and Hepbasli, A., 2014, Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 64, 582-600.
  • Bejan, A., Tsatsaronis, G. and Moran, M., 1996, Thermal Design and Optimization John Wiley and Sons. Inc. New York.
  • Gorji-Bandpy, M. and Ebrahimian, V., 2006, Exergoeconomic analysis of gas turbine power plants, International Energy Journal 7, 35-41.
  • Haydargil, D. and Abuşoğlu, A., 2018, A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration. Energy, 159, 97-114.
  • Jung, J. Y., Lee, H. S., Kim, H. J., Yoo, Y., Choi, W. Y. and Kwak, H. Y., 2016, Thermoeconomic analysis of an ocean thermal energy conversion plant. Renewable Energy, 86, 1086-1094.
  • Keçebaş, A., 2013, Effect of reference state on the exergoeconomic evaluation of geothermal district heating systems. Renewable and Sustainable Energy Reviews, 25, 462-469.
  • Kecebas, A., 2013, The modified productive structure analysis of Afyon geothermal district heating system for economic optimization. International Journal of Renewable Energy Research (IJRER), 3(1), 60-67.
  • Kim, S. M., Oh, S. D., Kwon, Y. H. and Kwak, H. Y., 1998, Exergoeconomic analysis of thermal systems. Energy, 23(5), 393-406.
  • Kwak, H. Y., Byun, G. T., Kwon, Y. H., and Yang, H., 2002, Cost Structure of CGAM Cogeneration System. In ASME 2002 International Mechanical Engineering Congress and Exposition (pp. 225-232). American Society of Mechanical Engineers Digital Collection.
  • Kwak, H. Y., Lee, H. S., Jung, J. Y., Jeon, J. S. and Park, D. R., 2004, Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant. Fuel, 83(14-15), 2087-2094. Kwak, H. Y., Kim, D. J. and Jeon, J. S., 2003, Exergetic and thermoeconomic analyses of power plants. Energy, 28(4), 343-360.
  • Kwak, H. Y., You, Y., Oh, S. D. and Jang, H. N., 2014, Thermoeconomic analysis of ground‐source heat pump systems. International journal of energy research, 38(2), 259-269.
  • Lazzaretto, A. and Tsatsaronis, G., 2006, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31(8-9), 1257-1289.
  • Lozano, M.A., Valero, A., 1993, Thermoeconomic analysis of gas turbine cogeneration systems, Thermodynamics and the Design, Analysis, and Improvement of Energy Systems (Edt. H.J. Richter) 30, 311-320.
  • Sahu, M. K., Choudhary, T. and Sanjay, Y., 2017, Exergoeconomic Analysis of Air Cooled Turboprop Engine: Air Craft Application (No. 2017-01-2044). SAE Technical Paper.
  • Seo, S. H., Oh, S. D., Oh, H., Kim, M., Lee, W. Y. and Kwak, H. Y., 2019, Thermal management for a hydrogen-fueled 1-kW PEMFC based on thermoeconomic analysis. International Journal of Hydrogen Energy, 44(45), 24934-24946.
  • Turgut, E. T., Karakoc, T. H. and Hepbasli, A., 2009, Exergoeconomic analysis of an aircraft turbofan engine. International Journal of Exergy, 6(3), 277-294.
  • Uysal, C., 2020, A new approach to advanced exergoeconomic analysis: The unit cost of entropy generation. Environmental Progress & Sustainable Energy, 39(1), 13297.
  • Uysal, C., Kurt, H. and Kwak, H. Y., 2017, Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120.
  • Uysal, C., Ozen, D. N., Kurt, H. and Kwak, H. Y., 2020, A comparative assessment of SPECO and MOPSA on costing of exergy destruction. International Journal of Exergy, 32(1), 62-81.
  • Yilmaz, C., 2018, Thermoeconomic cost analysis and comparison of methodologies for Dora II binary geothermal power plant. Geothermics, 75, 48-57.
  • Yoo, Y., Oh, H. S., Uysal, C. and Kwak, H. Y., 2018, Thermoeconomic diagnosis of an air-cooled air conditioning system. International Journal of Exergy, 26(4), 393-417

THERMOECONOMIC ANALYSIS OF T56 TURBOPROP ENGINE UNDER DIFFERENT LOAD CONDITIONS

Year 2020, , 251 - 265, 31.10.2020
https://doi.org/10.47480/isibted.817013

Abstract

In this study, T56 turboprop engine was theoretically modelled for 75% load, 100% load, military (MIL) mode, and Take-off mode conditions. For each load conditions, thermoeconomic analyses of T56 turboprop engine were performed to allocate the unit costs of shaft work and thrust and to determine exergy destruction cost rates for system equipment. In thermoeconomic analyses, Specific Exergy Costing (SPECO) and Modified Productive Structure Analysis (MOPSA) methods were used. MOPSA method gave higher unit cost values for shaft work and thrust compared to SPECO method. As a result, for Take-off mode, the unit cost of shaft work transferred to propeller was determined to be 78.87 $/GJ in SPECO method, while this value was calculated to be 84.68 $/GJ with MOPSA method. The unit cost of negentropy of T56 turboprop engine decreased with increasing in engine load and ranged from 14.98 $/GJ to 11.08 $/GJ. The exergy destruction cost rates obtained with MOPSA method for the system equipment were considerably lower than the results obtained with SPECO method. For instance, in Take-off mode, exergy destruction cost rate of combustion chamber was calculated to be 865.10 $/h in SPECO method, whereas it was calculated to be 247.94 $/h in MOPSA method. The exergoeconomic factor of overall system was determined to be 23.07% in SPECO method, and 54.16% in MOPSA method for Take-off mode

References

  • Altuntas, O., Karakoc, T. H. and Hepbasli, A., 2012, Exergetic, exergoeconomic and sustainability assessment of piston-prop aircraft engine. Int J Therm Sci Technol, 32, 133-43.
  • Aksu, B., 2019, Thermoeconomic Analysis Of A Water To Water Heat Pump Under Different Condenser And Evaporator Conditions. Journal of Thermal Engineering, 5(3), 198-209.
  • Balle, J.K.O., 2016, About the Rolls-Royce T56, Forecast International.
  • Balli, O., 2019, Thermodynamic, thermoeconomic and environmental performance analyses of a high bypass turbofan engine used on commercial aircrafts. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 453-461.
  • Balli, O., Aras, H., Aras, N. and Hepbasli, A., 2008, Exergetic and exergoeconomic analysis of an Aircraft Jet Engine (AJE). International Journal of Exergy, 5(5), 567.
  • Balli, O. and Hepbasli, A., 2013, Energetic and exergetic analyses of T56 turboprop engine. Energy conversion and management, 73, 106-120.
  • Balli, O. and Hepbasli, A., 2014, Exergoeconomic, sustainability and environmental damage cost analyses of T56 turboprop engine. Energy, 64, 582-600.
  • Bejan, A., Tsatsaronis, G. and Moran, M., 1996, Thermal Design and Optimization John Wiley and Sons. Inc. New York.
  • Gorji-Bandpy, M. and Ebrahimian, V., 2006, Exergoeconomic analysis of gas turbine power plants, International Energy Journal 7, 35-41.
  • Haydargil, D. and Abuşoğlu, A., 2018, A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration. Energy, 159, 97-114.
  • Jung, J. Y., Lee, H. S., Kim, H. J., Yoo, Y., Choi, W. Y. and Kwak, H. Y., 2016, Thermoeconomic analysis of an ocean thermal energy conversion plant. Renewable Energy, 86, 1086-1094.
  • Keçebaş, A., 2013, Effect of reference state on the exergoeconomic evaluation of geothermal district heating systems. Renewable and Sustainable Energy Reviews, 25, 462-469.
  • Kecebas, A., 2013, The modified productive structure analysis of Afyon geothermal district heating system for economic optimization. International Journal of Renewable Energy Research (IJRER), 3(1), 60-67.
  • Kim, S. M., Oh, S. D., Kwon, Y. H. and Kwak, H. Y., 1998, Exergoeconomic analysis of thermal systems. Energy, 23(5), 393-406.
  • Kwak, H. Y., Byun, G. T., Kwon, Y. H., and Yang, H., 2002, Cost Structure of CGAM Cogeneration System. In ASME 2002 International Mechanical Engineering Congress and Exposition (pp. 225-232). American Society of Mechanical Engineers Digital Collection.
  • Kwak, H. Y., Lee, H. S., Jung, J. Y., Jeon, J. S. and Park, D. R., 2004, Exergetic and thermoeconomic analysis of a 200-kW phosphoric acid fuel cell plant. Fuel, 83(14-15), 2087-2094. Kwak, H. Y., Kim, D. J. and Jeon, J. S., 2003, Exergetic and thermoeconomic analyses of power plants. Energy, 28(4), 343-360.
  • Kwak, H. Y., You, Y., Oh, S. D. and Jang, H. N., 2014, Thermoeconomic analysis of ground‐source heat pump systems. International journal of energy research, 38(2), 259-269.
  • Lazzaretto, A. and Tsatsaronis, G., 2006, SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31(8-9), 1257-1289.
  • Lozano, M.A., Valero, A., 1993, Thermoeconomic analysis of gas turbine cogeneration systems, Thermodynamics and the Design, Analysis, and Improvement of Energy Systems (Edt. H.J. Richter) 30, 311-320.
  • Sahu, M. K., Choudhary, T. and Sanjay, Y., 2017, Exergoeconomic Analysis of Air Cooled Turboprop Engine: Air Craft Application (No. 2017-01-2044). SAE Technical Paper.
  • Seo, S. H., Oh, S. D., Oh, H., Kim, M., Lee, W. Y. and Kwak, H. Y., 2019, Thermal management for a hydrogen-fueled 1-kW PEMFC based on thermoeconomic analysis. International Journal of Hydrogen Energy, 44(45), 24934-24946.
  • Turgut, E. T., Karakoc, T. H. and Hepbasli, A., 2009, Exergoeconomic analysis of an aircraft turbofan engine. International Journal of Exergy, 6(3), 277-294.
  • Uysal, C., 2020, A new approach to advanced exergoeconomic analysis: The unit cost of entropy generation. Environmental Progress & Sustainable Energy, 39(1), 13297.
  • Uysal, C., Kurt, H. and Kwak, H. Y., 2017, Exergetic and thermoeconomic analyses of a coal-fired power plant. International Journal of Thermal Sciences, 117, 106-120.
  • Uysal, C., Ozen, D. N., Kurt, H. and Kwak, H. Y., 2020, A comparative assessment of SPECO and MOPSA on costing of exergy destruction. International Journal of Exergy, 32(1), 62-81.
  • Yilmaz, C., 2018, Thermoeconomic cost analysis and comparison of methodologies for Dora II binary geothermal power plant. Geothermics, 75, 48-57.
  • Yoo, Y., Oh, H. S., Uysal, C. and Kwak, H. Y., 2018, Thermoeconomic diagnosis of an air-cooled air conditioning system. International Journal of Exergy, 26(4), 393-417
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Dilek Ozen This is me 0000-0002-8622-4990

Cuneyt Uysal This is me 0000-0002-7986-1684

Ozgur Ballı This is me 0000-0001-6465-8387

Publication Date October 31, 2020
Published in Issue Year 2020

Cite

APA Ozen, D., Uysal, C., & Ballı, O. (2020). THERMOECONOMIC ANALYSIS OF T56 TURBOPROP ENGINE UNDER DIFFERENT LOAD CONDITIONS. Isı Bilimi Ve Tekniği Dergisi, 40(2), 251-265. https://doi.org/10.47480/isibted.817013