Research Article
BibTex RIS Cite

BI-IN SİSTEMİNDE ELEKTRİKSEL VE ISIL İLETKENLİK VE ISIL İLETKENLİĞE FONON KATKISI

Year 2020, , 367 - 378, 31.10.2020
https://doi.org/10.47480/isibted.817194

Abstract

Bu çalışmada, elektriksel ve ısıl iletkenlik ölçümleri kullanılarak ısısal iletkenliğe fonon katkısı kompozisyon değişimine bağlı olarak belirlenmiştir. In-Bi sistemlerinin birçok teknolojik uygulamalarda yaygın olarak kullanılması sebebiyle farklı kompozisyonlardaki Bi bileşimlerinin sıcaklığa bağlı elektriksel ve ısıl iletkenlik değişimleri ölçülmüştür. Elektriksel ve ısıl iletkenlik ölçümlerinde sırasıyla Dört Nokta Prob (FPP) ve Lineer Isı Akışı (LHF) yöntemleri kullanılmıştır. Erime sıcaklığında, intermetalik sistemlerin elektriksel iletkenlik değerleri 0.8524 (1/Ω m) ×106 ve 2.8381(1/Ω m) ×106 arasında ve ısısal iletkenlik değerleri 14.50 (W/Km) ve 35.93 (W/Km) arasında bulunmuştur. Ölçülen değerlerle, Wiedemann-Franz Kanunu (WFL) kullanılarak, ısıl iletkenliğe elektron ve fonon katkısı hesaplanmıştır. İntermetalik alaşım sistemleri için, elektriksel ve ısıl değerlerin sıcaklık katsayıları () sırasıyla 0.46-2.54(K-1) x10-3 ve 1.29-4.34 (K-1)x10-3 aralığında hesaplanmıştır. Bi-In İntermetalik alaşım sistemlerinin mikroyapılarını gözlemlemek için Taramalı Elektron Mikroskobu (SEM) ve yapılardaki fazların kompozisyonlarını belirlemek için, Enerji Dağıtıcı X-Işını (EDX) analizi kullanılmıştır. Bi-In alaşım sistemlerindeki erime sıcaklıkları (349.03 K-387.24 K), füzyon entalpisi (17.97 J/g- 42.37 J/g) ve spesifik ısı değişimi (0.159 J/gK-0.372 J/gK) Diferansiyel Taramalı Kalorimetre (DSC) ile ölçülmüştür.

References

  • Akbulut S., Ocak Y., Maraşlı N., Keşlioğlu K., Böyük U., Çadırlı E., Kaya H., 2008, Interfacial Energy of Solid In2Bi Intermetallic Phase in Equilibrium with In-Bi Eutectic Liquid at 72 Degrees C Equilibrating Temperature, Mat. Charact., 59, 1101-1110.
  • Akbulut S., Ocak Y., Keşlioğlu K., Maraşlı N., 2009, Thermal Conductivities of Solid and Liquid Phases for Neopentylglycol Aminomethylprppanediol and their Binary Alloy, J. Phys. and Chem. of Solids, 70, 72-78.
  • Aksöz N., 2013, The Determination of Thermophysical Properties of Metallic Alloys, Nevşehir University Graduate School of Natural and Applied Sciences, M. Sc. Thesis, Nevşehir.
  • Altıntas Y., Kaygısız Y., Öztürk E., Aksöz S., Keşlioğlu K. and Maraşlı N., 2016, The Measurements of Electrical and Thermal Conductivity Variations with Temperature and Phonon Component of the Thermal Conductivity in Sn–Cd–Sb, Sn–In–Cu, Sn–Ag–Bi and Sn–Bi–Zn alloys, Int. J. Thermal Sci., 100, 1-9.
  • ASM International Alloy Phase Diagram and the Handbook Committees, 1992, ASM Handbook vol. 3 Alloy Phase Diagrams, 100.
  • Ata Esener P., Altıntas Y., Bayram Ü., Öztürk E., Maraşlı N., Aksöz S., 2019, Effect of Sn Contents on Thermodynamic, Microstructure and Mechanical Properties in the Zn90–Bi10 and Bi88–Zn12 Based Ternary Alloys, J Mater Sci: Mater in Elect., 30, 3678-3691.
  • Bencze P.L., 2006, Mass Spectrometric Determination of Ternary Interaction Parameters of Liquid Cu–In–Sn Alloy, Int. J. Mass Spectrom., 257, 41–49.
  • Callendar H.L., Nicolson J.T., 1897, Experiments on the Condensation of Steam. Part I. a New Apparatus for Studying the Rate of Condensation of Steam on a Metal Surface at Different Temperatures and Pressures, Brt. Assoc. Adv. Sci., Rept. Ann. Meeting, 22, 418.
  • Gündüz M., Hunt J.D., 1985, The Measurement of Solid−Liquid Surface Energies in the Al−Cu, Al− Si and Pb−Sn Systems, Acta Metall., 33,1651–1672.
  • Jiang N., Wachsman E.D., Jung S.H., 2002, A Higher Conductivity Bi2O3-Based Electrolyte, Solid State Ionics, 150, 347–353.
  • Karadağ S.B., Öztürk E., Aksöz S., Maraşlı N., 2018, Thermophysical Properties of NPG Solid Solution in the NPG-SCN Organic System, Int. J Mater Res., 109, 219-224.
  • Keşlioğlu K., Böyük U., Erol M., Maraşlı N., 2006, Experimental Determination of Solid-Liquid Interfacial Energy for Succinonitrile Solid Solution in Equilibrium with the Succinonitrile-(D) Camphor Eutectic Liquid, J. Mat. Sci., 41, 7939-7943.
  • Kittel C., 1965, Introduction to Solid State Physics sixth ed. John Wiley and Sons.
  • Liu H.Y., Avrutin V., Izyumskaya N., Ozgur U., Morkoc H., 2010, Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices, Superlat. Microstruct, 48, 458–484.
  • Maraşlı N., Hunt J.D.,1996, Solid−Liquid Surface Energies in the Al−CuAl2, Al−NiAl3 and Al− Ti Systems, Acta Metall., 44, 1085–1096.
  • Meydaneri F., Saatçi B., Ari M., 2012, Thermo-Electrical Characterization of Lead-Cadmium (Pb-Cd) Alloys, Int. J. Phys. Sci., 7 (48), 6210-6221.
  • Ocak Y., Akbulut S., Keşlioğlu K., Maraşlı N., 2008, Solid-Liquid Interfacial Energy of Aminomethylpropanediol, J. Phys. D: Appl. Phys., 41, 065309.
  • Onaran K., Material Science, 2009, Science Technique Publisher, İstanbul/Turkey.
  • Pietenpol W.B., Miley H. A, 1929, Electrical Resistivities and Temperature Coefficients of Lead, Tin, Zinc and Bismuth in the Solid and Liquid States, Phys. Rev, 34, 1599.
  • Rudnev V., Loveless D., Cook R., Black M., 2003, Handbook of Induction Heating. Markel Dekker Inc, New York, 119-120.
  • Sammes N.M., Tompsett G.A., Nafe H., Aldinger F., 1999, Bismuth Based Oxide Electrolytes Structure and Ionic Conductivity, J. Eur. Cer. Soc., 19, 1801–1826.
  • Sun H.T., Zhou J., Qiu J., 2014, Recent Advances in Bismuth Activated Photonic Materials, Prog. In Mater. Sci., 64, 1–72.
  • Tahar R.B.H., Ban T., Ohya Y., Takahashi Y., 1998, Tin Doped Indium Oxide Thin Films Electrical Properties, J. Appl. Phys., 83, 2631–2645.
  • Takahashi T., Iwahara H., Esaka T., 1977, High Oxide Ion Conduction in Sintered Oxide of the System Bi2O3–M2O3, J. Elec. Soc., 124, 1563–1569.
  • Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G., 1970, Thermal Conductivity Metallic Elements and Alloys, New York-Washington, vol. 1, 17a.
  • Touloukian Y.S., Powell R.W., Ho C.Y, Klemens P.G.,1970, Thermal Conductivity Metallic Elements and Alloys, New York, Washington, vol.1, 39-40.
  • Touloukian Y.S., Powell R.W., Ho C.Y, Klemens P.G.,1970, Thermal Conductivity Metallic Elements and Alloys, Thermophysical Properties of Matter, New York - Washington, 13a-25a, 49, 149, 185, 408, 498, 845.
  • Valder L.B., 1954, Resistivity Measurements on Germanium for Transistors, Proc. IRE., 42, 420-427.
  • Vizdal J., Braga M.H., Kroupa A., Richter K.W., Soares D., Malheiros L.F., Ferreira J., 2007, Thermodynamic Assessment of the Bi–Sn–Zn System, Calphad, 31, 438–448.
  • Yang W., Messler Jr R.W., 1994, Microstructure Evolution of Eutectic Sn-Ag Solder Joints, J. Electron. Mater., 23(8), 765-772.
  • Yang S.B., Kong B.S., Jung D.H., Baek Y.K., Han C.S., Oh S.K., Jung H.T., 2011, Recent Advances in Hybrids of Carbon Nanotube Network Films and Nanomaterials for their Potential Applications as Transparent Conducting Films, Nanoscale 3, 1361–1373.
  • Yılmaz S., 2008, Synthesis, Characterization and Investigation of the Solid State Oxygen Ionic Conductivities of Beta-Bi2o3 Type Solid Electrolytes Doped with Dy2o3, Eu2o3, Sm2o3, Gazi University, Instute of Science and Technology, Ph.D. Thesis, Ankara.

ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM

Year 2020, , 367 - 378, 31.10.2020
https://doi.org/10.47480/isibted.817194

Abstract

In this study, the contribution of phonon to the thermal conductivity in the In-Bi (Indium-Bismuth) system due to its composition variation was determined from their electrical and thermal conductivity measurements. Because of the common usage of In-Bi system in many technological applications, thermal and electrical conductivity variations with temperature for different compositions of Bi component were measured. Four-Point Probe (FPP) and Linear Heat-Flow (LHF) methods were used for electrical and thermal conductivity measurements respectively. Intermetallic systems' electrical conductivity values were determined between 0.8524 (1/Ω m) ×106 and 2.8381(1/Ω m) ×106 and thermal conductivity values were found between 14.50 (W/Km) and 35.93 (W/Km) at the melting temperature. Electron and phonon contributions to the thermal conductivity were calculated by using Wiedemann-Franz Law (WFL) from the measured values. The temperature coefficients values () of electrical and thermal conductivity were calculated between 0.46-2.54 (K-1) x10-3 and 1.29-4.34 (K-1) x10-3 respectively. In order to observe microstructure of the Bi-In intermetallic alloy Scanning Electron Microscopy (SEM) and to determine the composition of the phases in the structures, Energy Dispersive X-Ray Analysis (EDX) were used. Also melting temperatures (349.03 K-387.24 K), enthalpy of fusion (17.97 J/g- 42.37 J/g) and specific heat change (0.159 J/gK-0.372 J/gK) of Bi-In alloy systems were measured by using Differential Scanning Calorimeter (DSC).

References

  • Akbulut S., Ocak Y., Maraşlı N., Keşlioğlu K., Böyük U., Çadırlı E., Kaya H., 2008, Interfacial Energy of Solid In2Bi Intermetallic Phase in Equilibrium with In-Bi Eutectic Liquid at 72 Degrees C Equilibrating Temperature, Mat. Charact., 59, 1101-1110.
  • Akbulut S., Ocak Y., Keşlioğlu K., Maraşlı N., 2009, Thermal Conductivities of Solid and Liquid Phases for Neopentylglycol Aminomethylprppanediol and their Binary Alloy, J. Phys. and Chem. of Solids, 70, 72-78.
  • Aksöz N., 2013, The Determination of Thermophysical Properties of Metallic Alloys, Nevşehir University Graduate School of Natural and Applied Sciences, M. Sc. Thesis, Nevşehir.
  • Altıntas Y., Kaygısız Y., Öztürk E., Aksöz S., Keşlioğlu K. and Maraşlı N., 2016, The Measurements of Electrical and Thermal Conductivity Variations with Temperature and Phonon Component of the Thermal Conductivity in Sn–Cd–Sb, Sn–In–Cu, Sn–Ag–Bi and Sn–Bi–Zn alloys, Int. J. Thermal Sci., 100, 1-9.
  • ASM International Alloy Phase Diagram and the Handbook Committees, 1992, ASM Handbook vol. 3 Alloy Phase Diagrams, 100.
  • Ata Esener P., Altıntas Y., Bayram Ü., Öztürk E., Maraşlı N., Aksöz S., 2019, Effect of Sn Contents on Thermodynamic, Microstructure and Mechanical Properties in the Zn90–Bi10 and Bi88–Zn12 Based Ternary Alloys, J Mater Sci: Mater in Elect., 30, 3678-3691.
  • Bencze P.L., 2006, Mass Spectrometric Determination of Ternary Interaction Parameters of Liquid Cu–In–Sn Alloy, Int. J. Mass Spectrom., 257, 41–49.
  • Callendar H.L., Nicolson J.T., 1897, Experiments on the Condensation of Steam. Part I. a New Apparatus for Studying the Rate of Condensation of Steam on a Metal Surface at Different Temperatures and Pressures, Brt. Assoc. Adv. Sci., Rept. Ann. Meeting, 22, 418.
  • Gündüz M., Hunt J.D., 1985, The Measurement of Solid−Liquid Surface Energies in the Al−Cu, Al− Si and Pb−Sn Systems, Acta Metall., 33,1651–1672.
  • Jiang N., Wachsman E.D., Jung S.H., 2002, A Higher Conductivity Bi2O3-Based Electrolyte, Solid State Ionics, 150, 347–353.
  • Karadağ S.B., Öztürk E., Aksöz S., Maraşlı N., 2018, Thermophysical Properties of NPG Solid Solution in the NPG-SCN Organic System, Int. J Mater Res., 109, 219-224.
  • Keşlioğlu K., Böyük U., Erol M., Maraşlı N., 2006, Experimental Determination of Solid-Liquid Interfacial Energy for Succinonitrile Solid Solution in Equilibrium with the Succinonitrile-(D) Camphor Eutectic Liquid, J. Mat. Sci., 41, 7939-7943.
  • Kittel C., 1965, Introduction to Solid State Physics sixth ed. John Wiley and Sons.
  • Liu H.Y., Avrutin V., Izyumskaya N., Ozgur U., Morkoc H., 2010, Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices, Superlat. Microstruct, 48, 458–484.
  • Maraşlı N., Hunt J.D.,1996, Solid−Liquid Surface Energies in the Al−CuAl2, Al−NiAl3 and Al− Ti Systems, Acta Metall., 44, 1085–1096.
  • Meydaneri F., Saatçi B., Ari M., 2012, Thermo-Electrical Characterization of Lead-Cadmium (Pb-Cd) Alloys, Int. J. Phys. Sci., 7 (48), 6210-6221.
  • Ocak Y., Akbulut S., Keşlioğlu K., Maraşlı N., 2008, Solid-Liquid Interfacial Energy of Aminomethylpropanediol, J. Phys. D: Appl. Phys., 41, 065309.
  • Onaran K., Material Science, 2009, Science Technique Publisher, İstanbul/Turkey.
  • Pietenpol W.B., Miley H. A, 1929, Electrical Resistivities and Temperature Coefficients of Lead, Tin, Zinc and Bismuth in the Solid and Liquid States, Phys. Rev, 34, 1599.
  • Rudnev V., Loveless D., Cook R., Black M., 2003, Handbook of Induction Heating. Markel Dekker Inc, New York, 119-120.
  • Sammes N.M., Tompsett G.A., Nafe H., Aldinger F., 1999, Bismuth Based Oxide Electrolytes Structure and Ionic Conductivity, J. Eur. Cer. Soc., 19, 1801–1826.
  • Sun H.T., Zhou J., Qiu J., 2014, Recent Advances in Bismuth Activated Photonic Materials, Prog. In Mater. Sci., 64, 1–72.
  • Tahar R.B.H., Ban T., Ohya Y., Takahashi Y., 1998, Tin Doped Indium Oxide Thin Films Electrical Properties, J. Appl. Phys., 83, 2631–2645.
  • Takahashi T., Iwahara H., Esaka T., 1977, High Oxide Ion Conduction in Sintered Oxide of the System Bi2O3–M2O3, J. Elec. Soc., 124, 1563–1569.
  • Touloukian Y.S., Powell R.W., Ho C.Y., Klemens P.G., 1970, Thermal Conductivity Metallic Elements and Alloys, New York-Washington, vol. 1, 17a.
  • Touloukian Y.S., Powell R.W., Ho C.Y, Klemens P.G.,1970, Thermal Conductivity Metallic Elements and Alloys, New York, Washington, vol.1, 39-40.
  • Touloukian Y.S., Powell R.W., Ho C.Y, Klemens P.G.,1970, Thermal Conductivity Metallic Elements and Alloys, Thermophysical Properties of Matter, New York - Washington, 13a-25a, 49, 149, 185, 408, 498, 845.
  • Valder L.B., 1954, Resistivity Measurements on Germanium for Transistors, Proc. IRE., 42, 420-427.
  • Vizdal J., Braga M.H., Kroupa A., Richter K.W., Soares D., Malheiros L.F., Ferreira J., 2007, Thermodynamic Assessment of the Bi–Sn–Zn System, Calphad, 31, 438–448.
  • Yang W., Messler Jr R.W., 1994, Microstructure Evolution of Eutectic Sn-Ag Solder Joints, J. Electron. Mater., 23(8), 765-772.
  • Yang S.B., Kong B.S., Jung D.H., Baek Y.K., Han C.S., Oh S.K., Jung H.T., 2011, Recent Advances in Hybrids of Carbon Nanotube Network Films and Nanomaterials for their Potential Applications as Transparent Conducting Films, Nanoscale 3, 1361–1373.
  • Yılmaz S., 2008, Synthesis, Characterization and Investigation of the Solid State Oxygen Ionic Conductivities of Beta-Bi2o3 Type Solid Electrolytes Doped with Dy2o3, Eu2o3, Sm2o3, Gazi University, Instute of Science and Technology, Ph.D. Thesis, Ankara.
There are 32 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Pınar Ata This is me 0000-0002-6498-4534

Ümit Bayram 0000-0001-8760-8024

Esra Öztürk This is me 0000-0002-3531-7564

Sezen Aksöz This is me 0000-0002-8990-1926

Necmettin Maraşlı This is me 0000-0002-1993-2655

Publication Date October 31, 2020
Published in Issue Year 2020

Cite

APA Ata, P., Bayram, Ü., Öztürk, E., Aksöz, S., et al. (2020). ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM. Isı Bilimi Ve Tekniği Dergisi, 40(2), 367-378. https://doi.org/10.47480/isibted.817194
AMA Ata P, Bayram Ü, Öztürk E, Aksöz S, Maraşlı N. ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM. Isı Bilimi ve Tekniği Dergisi. October 2020;40(2):367-378. doi:10.47480/isibted.817194
Chicago Ata, Pınar, Ümit Bayram, Esra Öztürk, Sezen Aksöz, and Necmettin Maraşlı. “ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM”. Isı Bilimi Ve Tekniği Dergisi 40, no. 2 (October 2020): 367-78. https://doi.org/10.47480/isibted.817194.
EndNote Ata P, Bayram Ü, Öztürk E, Aksöz S, Maraşlı N (October 1, 2020) ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM. Isı Bilimi ve Tekniği Dergisi 40 2 367–378.
IEEE P. Ata, Ü. Bayram, E. Öztürk, S. Aksöz, and N. Maraşlı, “ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM”, Isı Bilimi ve Tekniği Dergisi, vol. 40, no. 2, pp. 367–378, 2020, doi: 10.47480/isibted.817194.
ISNAD Ata, Pınar et al. “ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM”. Isı Bilimi ve Tekniği Dergisi 40/2 (October 2020), 367-378. https://doi.org/10.47480/isibted.817194.
JAMA Ata P, Bayram Ü, Öztürk E, Aksöz S, Maraşlı N. ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM. Isı Bilimi ve Tekniği Dergisi. 2020;40:367–378.
MLA Ata, Pınar et al. “ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM”. Isı Bilimi Ve Tekniği Dergisi, vol. 40, no. 2, 2020, pp. 367-78, doi:10.47480/isibted.817194.
Vancouver Ata P, Bayram Ü, Öztürk E, Aksöz S, Maraşlı N. ELECTRICAL AND THERMAL CONDUCTIVITY AND PHONON CONTRIBUTION TO THE THERMAL CONDUCTIVITY IN THE BI-IN SYSTEM. Isı Bilimi ve Tekniği Dergisi. 2020;40(2):367-78.