Research Article
BibTex RIS Cite

KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ

Year 2018, Volume: 38 Issue: 2, 25 - 38, 31.10.2018

Abstract

Bu çalışmada düşük Mach sayısı için zamana bağlı 2 boyutlu kavite akışı ve kavite boyunca akış kaynaklı aerodinamik gürültü incelenmiştir. İki boyutlu akış alanı çözümlerinde, iki farklı zamana bağlı Yeniden-Temas-Eden Girdap Benzetimi (DES) türbülans modelleri kavite akışlarını gözlemlemek için kullanılmıştır. DES ayrıklaştırmasında hibrit model olarak, iki denklemli SST k-ω ve tek taşınım denklemli Spalart-Allmaras türbülans modelleri kullanılmıştır. Bunlara ek olarak farklı sayısal ayrıklaştırma algoritma ve sayısal yöntemleri de düşük Mach sayılarında kavite akışını incelemek için kullanılmıştır. Kavite geometrisi için hesaplanan sayısal sonuçlar düşük Mach sayısı şartları altında, deneysel veriler ile hem akış alanı değişkenleri hem de akustik sinyal verileri için karşılaştırılmış ve doğrulanmıştır. Zamana bağlı akış alanı sonuçları, Ffowcs Williams–Hawkings (FW-H) Akustik Analojisi çözümleri için girdi verisi olarak kullanılıp kavite gürültü değerleri hesaplanmıştır ve deneysel veriler ile karşılaştırılmıştır. Kavite gürültüsüne ait deneysel veriler ile 500-1500 Hz frekans aralığında uyumlu sonuçlar elde edilmiştir.

Supporting Institution

İstanbul Teknik Üniversitesi

Project Number

FYD-2017-24688

References

  • Cattafesta L.N., Song Q., Williams D., Rowley C., Alvi F., 2008. Active Control of Flow-Induced Cavity Oscillations. Progress in Aerospace Sciences, 44, 479-502.
  • Colonius T., Rowley C.W., Basu A.J., 2002. On Self-sustained Oscillations in Two-dimentional Compressible Flow Over Rectangular Cavities. Journal Fluid Mechanics, 455, 315–346.
  • Crook S.D., Lau T.C.W., Kelso R.M., 2013. Three-Dimensional Flow within Shallow and Narrow Cavities. Journal of Fluid Mechanics, 735, 587-612. FLUENT Theory Guide 14.0, 2011.
  • Ffowcs Williams J.E., Hawkings D.L., 1969. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transcation Royal Society Series A, 264, 321-342.
  • Fuglsang, D.F., Cain, A.B., 1992. Evaluation of Shear Layer Cavity Resonance Mechanisms by Numerical Simulation. 30. AIAA Aerospace Scientific Meeting Exhiation, Reno.
  • Khanal B., Knowles K., Saddington A., 2009. Computational Study of Cavity Flowfield at Transonic Speeds. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.
  • Lighthill M.J., 1952. On Sound Generated Aerodynamically I. General Theory. Proceeding Royal Society London A, 211, 564-587.
  • Lawson S.J., Barakos G.N., 2011. Review of Numerical Simulations for High-speed Turbulent Cavity Flows. Progress in Aerospace Sciences, 47,186-216.
  • Malone J., Debiasi M., Little J., Samimy M., 2009. Analysis of the Spectral Relationships of Cavity Tones in Subsonic Resonant Cavity Flows. Physics of Fluids, 21, 9-15.
  • Mendonca F., Allen R.C., Lewis M., 12-14 Mayıs 2003. CFD Prediction of Narrowband and Broadband Cavity Acoustics at M=0.85. 9. AIAA/CEAS Aeroacoustics Conference and Exhibit, South Carolina.
  • Parkhi D., 2009. Aeroacoustics of Cavity Flow Using Time-Resolved Particle Image Velocimetry. Yüksek Lisans Tezi, Aerospace Engineering at Delf University of Technology, Delf, 74
  • Shieh C.M., Morris P.J., 2001. Computation of Two- and Three-Dimensional Turbulent Cavity Flows. 39. AIAA Aerospace Scientific Meeting Exhiation, Reno.
  • Smirnov R., Shi S., and Celik I., 2001. Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling. Journal of Fluids Engineering. 123. 359–371.
  • Srinivasan S., Baysal O., 1991. Navier Stokes Calculations of Transonic Flows Past 3-D Cavities. ASME Journal of Fluids Engineering, 113, 368-376. Tam C.K.W., 2004. Computational Aeroacoustics: An Overview of Computational Challenges and Applications. International Journal of Compuational Fluid Dynamics, 18, 54–67.
  • Wagner C., Hüttl T., Sagaut P., 2007. Large-Eddy Simulation for Acoustics. Cambridge University Press.
  • Wilcox D.C., 2006. Turbulence Modeling for CFD. 3. Baskı, DCW Industries, Canada

AEROACOUSTICS ANALYSIS OF CAVITY FLOW

Year 2018, Volume: 38 Issue: 2, 25 - 38, 31.10.2018

Abstract

In this study, unsteady low Mach number flow field and aerodynamically generated noise of 2D cavity flows are investigated. In the case of 2D flow fields, different unsteady Detached Eddy Simulation (DES) turbulence models are used to observe cavity flow field. SST k–ω with two transport equations and Spalart-Allmaras with one transport equation are used to calculate near field to take in account wall effect in which DES is used. In addition to these, different discretization algorithms and approaches are employed to calculate the flow field and to account the acoustic level. Computed numerical results for cavity flow are compared and validated with an experimental measurement of low Mach numbers for the flow filed quantities and acoustic signals. All unsteady flow fields results are used to compute a cavity noise using Ffowcs Williams–Hawkings (FW-H) Acoustics Analogy and compared with experimental data. At 500 – 1500 Hz, well agreement is observed between numerical result and the experimental data which are conducted for cavity noise.

Project Number

FYD-2017-24688

References

  • Cattafesta L.N., Song Q., Williams D., Rowley C., Alvi F., 2008. Active Control of Flow-Induced Cavity Oscillations. Progress in Aerospace Sciences, 44, 479-502.
  • Colonius T., Rowley C.W., Basu A.J., 2002. On Self-sustained Oscillations in Two-dimentional Compressible Flow Over Rectangular Cavities. Journal Fluid Mechanics, 455, 315–346.
  • Crook S.D., Lau T.C.W., Kelso R.M., 2013. Three-Dimensional Flow within Shallow and Narrow Cavities. Journal of Fluid Mechanics, 735, 587-612. FLUENT Theory Guide 14.0, 2011.
  • Ffowcs Williams J.E., Hawkings D.L., 1969. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philosophical Transcation Royal Society Series A, 264, 321-342.
  • Fuglsang, D.F., Cain, A.B., 1992. Evaluation of Shear Layer Cavity Resonance Mechanisms by Numerical Simulation. 30. AIAA Aerospace Scientific Meeting Exhiation, Reno.
  • Khanal B., Knowles K., Saddington A., 2009. Computational Study of Cavity Flowfield at Transonic Speeds. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.
  • Lighthill M.J., 1952. On Sound Generated Aerodynamically I. General Theory. Proceeding Royal Society London A, 211, 564-587.
  • Lawson S.J., Barakos G.N., 2011. Review of Numerical Simulations for High-speed Turbulent Cavity Flows. Progress in Aerospace Sciences, 47,186-216.
  • Malone J., Debiasi M., Little J., Samimy M., 2009. Analysis of the Spectral Relationships of Cavity Tones in Subsonic Resonant Cavity Flows. Physics of Fluids, 21, 9-15.
  • Mendonca F., Allen R.C., Lewis M., 12-14 Mayıs 2003. CFD Prediction of Narrowband and Broadband Cavity Acoustics at M=0.85. 9. AIAA/CEAS Aeroacoustics Conference and Exhibit, South Carolina.
  • Parkhi D., 2009. Aeroacoustics of Cavity Flow Using Time-Resolved Particle Image Velocimetry. Yüksek Lisans Tezi, Aerospace Engineering at Delf University of Technology, Delf, 74
  • Shieh C.M., Morris P.J., 2001. Computation of Two- and Three-Dimensional Turbulent Cavity Flows. 39. AIAA Aerospace Scientific Meeting Exhiation, Reno.
  • Smirnov R., Shi S., and Celik I., 2001. Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling. Journal of Fluids Engineering. 123. 359–371.
  • Srinivasan S., Baysal O., 1991. Navier Stokes Calculations of Transonic Flows Past 3-D Cavities. ASME Journal of Fluids Engineering, 113, 368-376. Tam C.K.W., 2004. Computational Aeroacoustics: An Overview of Computational Challenges and Applications. International Journal of Compuational Fluid Dynamics, 18, 54–67.
  • Wagner C., Hüttl T., Sagaut P., 2007. Large-Eddy Simulation for Acoustics. Cambridge University Press.
  • Wilcox D.C., 2006. Turbulence Modeling for CFD. 3. Baskı, DCW Industries, Canada
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Baha Zafer This is me

Furkan Coşgun

Project Number FYD-2017-24688
Publication Date October 31, 2018
Published in Issue Year 2018 Volume: 38 Issue: 2

Cite

APA Zafer, B., & Coşgun, F. (2018). KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ. Isı Bilimi Ve Tekniği Dergisi, 38(2), 25-38.
AMA Zafer B, Coşgun F. KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ. Isı Bilimi ve Tekniği Dergisi. October 2018;38(2):25-38.
Chicago Zafer, Baha, and Furkan Coşgun. “KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ”. Isı Bilimi Ve Tekniği Dergisi 38, no. 2 (October 2018): 25-38.
EndNote Zafer B, Coşgun F (October 1, 2018) KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ. Isı Bilimi ve Tekniği Dergisi 38 2 25–38.
IEEE B. Zafer and F. Coşgun, “KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ”, Isı Bilimi ve Tekniği Dergisi, vol. 38, no. 2, pp. 25–38, 2018.
ISNAD Zafer, Baha - Coşgun, Furkan. “KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ”. Isı Bilimi ve Tekniği Dergisi 38/2 (October 2018), 25-38.
JAMA Zafer B, Coşgun F. KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ. Isı Bilimi ve Tekniği Dergisi. 2018;38:25–38.
MLA Zafer, Baha and Furkan Coşgun. “KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ”. Isı Bilimi Ve Tekniği Dergisi, vol. 38, no. 2, 2018, pp. 25-38.
Vancouver Zafer B, Coşgun F. KAVİTE AKIŞININ AEROAKUSTİK ANALİZİ. Isı Bilimi ve Tekniği Dergisi. 2018;38(2):25-38.