Research Article
BibTex RIS Cite

FARKLI TİPTE NANOPARÇACIKLARLA KATKILANAN A82 ORGANİK FAZ DEĞİŞTİREN MALZEMENİN TERMAL ÖZELLİKLERİNİN BELİRLENMESİ

Year 2018, Volume: 38 Issue: 2, 75 - 85, 31.10.2018

Abstract

Yüksek enerji depolama kapasitesine sahip organik faz değiştiren malzemelerin uygulamada etkin bir biçimde kullanılabilmeleri için düşük ısıl iletkenliklerinin iyileştirilmesi gerekmektedir. Bu çalışmada organik bir faz değiştiren malzeme içerisine nanoparçacıklar katkılanarak ısıl iletkenliğin iyileştirilmesi amaçlanmıştır. Kullanılan nanoparçacıkların tip, boyut ve şeklinin termal özellikler (ısıl iletkenlik, gizli ısılar, erime/katılaşma sıcaklıkları) üzerindeki etkisi sistematik olarak incelenmiştir. Karbon tabanlı nanoparçacık katkılanan organik faz değiştiren malzemelerin ısıl iletkenliklerinde görülen iyileşmenin metal tabanlı nanoparçacık katkılanan faz değiştiren malzemelere göre önemli derecede daha yüksek olduğu belirlenmiştir. %5 GNP katkılanan faz değiştiren malzeme kompozitinin ısıl iletkenliğinde %154.9 iyileşme sağlanmıştır. Katkılanan metal oksit veya karbon tabanlı nanoparçacık bölüntüsüne bağlı olarak erime/katılaşma sıcaklıklarında önemli bir değişim olmadığı (<1.5 oC) buna karşın gizli ısılarda %20’ye varan bir azalma olduğu gözlemlenmiştir. Buna karşın ZnO nanoparçacıkların gizli ısıları iyileştirmek gibi bir etkisinin olduğu tespit edilmiştir. GNP katkılanan faz değiştiren malzemelerin ısıl iletkenliklerinde elde edilen iyileşmelerin yanı sıra uzun dönem boyunca kararlılıklarını koruyabilmesi onun bir enerji depolama malzemesi olarak kullanılabileceğini göstermiştir.

References

  • Agyenim F., Eames O., Smyth M., 2009, A comparision of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins, Solar Energy,83,1509-1520.
  • Bellettre J., Sartre V., Biais F., Lallemand A., 1997, Transient state study of electronic motor heating and phase change solid–liquid cooling, Applied Thermal Engineering, 17, 17–31.
  • Cao Y., Faghri A.,1990, Thermal protection from intense localized moving heat fluxes using phase-change material, International Journal of Heat and Mass Transfer, 33,127-138.
  • Cui Y., Liu C., Hu S., Yu X., 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Solar Energy Materials& Solar Cells, 95,1208-1212.
  • Dinçer I., Rosen M.A., 2002, Thermal Energy Storage, John Wiley & Sons, New York, 2002.
  • Fan L.W., Fang X., Wang X., Zeng Y., Xiao Y.Q., Yu Z.T., Xu X., Hu Y.C., Cen K.F., 2013 Effects of various carbon nanofillers on thermal conductivity and energy storage properties pf parafin-based nanocomposite phase change materials, Applied Energy, 110,163-172.
  • Farid M.M., Khudhair A.M., Razack S. A. K. and Al-Hallaj S., 2004, A review on phase change energy storage: materials and applications, Energy Conversion. Managament, 45, 1597-1615.
  • Garimella S.V, Suresh V, 2006, Advances in mesoscale thermal management Technologies for microelectronics, Microelectronics Journal, 37, 1165-1185.
  • Ho C.J., Chu C.H., 1996, Thermal protection characteristics of a vertical rectangular cell filled with PCM/air layer, Heat and Mass Transfer,31, 191–198.
  • Ho C.J., Gao J.Y., 2009, Preparation and thermophysical properties of nanoparticle in parafin emulsion as phase change material, International Communication in Heat and Mass Transfer, 36, 467-470.
  • Kumerasan V., Velraj R., Das S.K., 2012, The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification, Heat and Mass Transfer, 48,1345-1355.
  • Pal D., Joshi Y.K.,1997, Application of phase change materials to thermal control of electronic modules: a computational study, Journal of Electronic Packaging, 119, 40–50.
  • Parlak M., Sömek K., Temel ÜN.,Yapici K., 2016, Experimental investigation of transient thermal response of phase change material embedded by Graphene nanoparticles in energy storage module, 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, 645-651.
  • Pincemin S., Olives R., Py X., 2008, Highly conductive composites made of phase change materials and graphite for thermal storage, Solar Energy, 603-618.
  • Sarier N., Onder E., 2012, Organic materails and their textile applications: An overview, Thermochimica Acta, 540, 7-60.
  • Shaikh S., Lafdi K., Hallinan K., 2008, Carbon nanoadditives latent energy storage of phase change materials, Journal of Applied Physics, 103, 094302.
  • Sharma A., Tyagi V.V., Chen C.R., Buddhi D., 2009, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews,13,318-345.
  • Xiao M., Feng B., Gong K.C., 2002, Preparation and performance of shape stabilized phase change thermal storage materails with high thermal conductivity, Energy Conversion Management, 43, 103-108. 85
  • Zalba B., Marin J.M., Cabeza L.F., Mehling H., 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23, 251–283.
  • Wang J., Xie H., Xin Z., 2009, Thermal properties of parafin based composites containing multi-walled carbon nanotubes, Thermochimica Acta, 488, 39-42.
  • Wang J., Xie H., Li Y., Xin Z., 2010, PW based phase change nanocomposites containing Al2O3, Journal of Thermal Analysis Calorimetry, 102, 709-713.
  • Wang J., Xie H., Xin Z., Li Y., 2010, Increasing thermal conductivity of palmitic acid by the addition of carbon nanotubes, Carbon, 48, 3979-3986.
  • Wang J., Xie H., Xin Z., Li Z., Li Y., Chen L., 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Solar Energy, 84, 339-344.
  • Wu S., Zhu D., Zhang X., Huang J.,2010 Preparation and melting/freezing characteristic of Cu/Parafin nanofluid as phase change material (PCM), Energy Fuels, 24, 1894-1898.
  • Yang J., Yang L., Xu C., Du X., 2016, Experimental sudy of enhancement of thermal energy storage with phase change material, Applied Energy, 169, 164-176.
  • Zeng J.L., Liu Y.Y., Cao Z.X., Zhang J., Zhang Z.H., Sun L.X., Xu F., 2008, Thermal conductitity enhancement of MWCNTs on Pani/Tetradecanol form-stable PCM, Journal of Thermal Analysis and Calorimetry, 91, 443-446.
  • Zhang ., Mang Z., Zhu H., Yanling W., Peng S., 2015, Experimental and numerical study of heat transfer characteristics of a Paraffin/metal foam composite PCM, Energy Procedia, 75-3091-3097.

DETERMINATION OF THERMAL PROPERTIES OF A82 ORGANIC PHASE CHANGE MATERIAL EMBEDDED WITH DIFFERENT TYPE NANOPARTICLES

Year 2018, Volume: 38 Issue: 2, 75 - 85, 31.10.2018

Abstract

The low thermal conductivities of organic phase-change materials must be increased so that they can be used effectively in practice. In this work, it is aimed to enhance the thermal conductivity of PCM by adding nanoparticles into PCM. The effect of used nanoparticle type, size and shape on the thermal properties such as thermal conductivity, latent heat, melting / solidification temperatures has been systematically investigated. The thermal conductivity enhancement of composites doped with carbon based nanoparticle were found to be higher than that of the composites doped with metal oxide nanoparticles. 154.9% improvement was achieved in the thermal conductivity of the phase change material composite doped with 5% GNP. It has been observed that there is no significant change in melting/ solidification temperatures (<1.5 °CC) depending on the doped metal oxide or carbon-based nanoparticles, but deterioration up to 20% in latent heat. However, ZnO nanoparticles have been found to have the effect of enhancing latent heats. In addition to the improvements achieved in the thermal conductivities of phase change materials, their stability are protected over the long term. This result show that it can be used as an energy storage material.

References

  • Agyenim F., Eames O., Smyth M., 2009, A comparision of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins, Solar Energy,83,1509-1520.
  • Bellettre J., Sartre V., Biais F., Lallemand A., 1997, Transient state study of electronic motor heating and phase change solid–liquid cooling, Applied Thermal Engineering, 17, 17–31.
  • Cao Y., Faghri A.,1990, Thermal protection from intense localized moving heat fluxes using phase-change material, International Journal of Heat and Mass Transfer, 33,127-138.
  • Cui Y., Liu C., Hu S., Yu X., 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Solar Energy Materials& Solar Cells, 95,1208-1212.
  • Dinçer I., Rosen M.A., 2002, Thermal Energy Storage, John Wiley & Sons, New York, 2002.
  • Fan L.W., Fang X., Wang X., Zeng Y., Xiao Y.Q., Yu Z.T., Xu X., Hu Y.C., Cen K.F., 2013 Effects of various carbon nanofillers on thermal conductivity and energy storage properties pf parafin-based nanocomposite phase change materials, Applied Energy, 110,163-172.
  • Farid M.M., Khudhair A.M., Razack S. A. K. and Al-Hallaj S., 2004, A review on phase change energy storage: materials and applications, Energy Conversion. Managament, 45, 1597-1615.
  • Garimella S.V, Suresh V, 2006, Advances in mesoscale thermal management Technologies for microelectronics, Microelectronics Journal, 37, 1165-1185.
  • Ho C.J., Chu C.H., 1996, Thermal protection characteristics of a vertical rectangular cell filled with PCM/air layer, Heat and Mass Transfer,31, 191–198.
  • Ho C.J., Gao J.Y., 2009, Preparation and thermophysical properties of nanoparticle in parafin emulsion as phase change material, International Communication in Heat and Mass Transfer, 36, 467-470.
  • Kumerasan V., Velraj R., Das S.K., 2012, The effect of carbon nanotubes in enhancing the thermal transport properties of PCM during solidification, Heat and Mass Transfer, 48,1345-1355.
  • Pal D., Joshi Y.K.,1997, Application of phase change materials to thermal control of electronic modules: a computational study, Journal of Electronic Packaging, 119, 40–50.
  • Parlak M., Sömek K., Temel ÜN.,Yapici K., 2016, Experimental investigation of transient thermal response of phase change material embedded by Graphene nanoparticles in energy storage module, 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Las Vegas, NV, 645-651.
  • Pincemin S., Olives R., Py X., 2008, Highly conductive composites made of phase change materials and graphite for thermal storage, Solar Energy, 603-618.
  • Sarier N., Onder E., 2012, Organic materails and their textile applications: An overview, Thermochimica Acta, 540, 7-60.
  • Shaikh S., Lafdi K., Hallinan K., 2008, Carbon nanoadditives latent energy storage of phase change materials, Journal of Applied Physics, 103, 094302.
  • Sharma A., Tyagi V.V., Chen C.R., Buddhi D., 2009, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews,13,318-345.
  • Xiao M., Feng B., Gong K.C., 2002, Preparation and performance of shape stabilized phase change thermal storage materails with high thermal conductivity, Energy Conversion Management, 43, 103-108. 85
  • Zalba B., Marin J.M., Cabeza L.F., Mehling H., 2003, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 23, 251–283.
  • Wang J., Xie H., Xin Z., 2009, Thermal properties of parafin based composites containing multi-walled carbon nanotubes, Thermochimica Acta, 488, 39-42.
  • Wang J., Xie H., Li Y., Xin Z., 2010, PW based phase change nanocomposites containing Al2O3, Journal of Thermal Analysis Calorimetry, 102, 709-713.
  • Wang J., Xie H., Xin Z., Li Y., 2010, Increasing thermal conductivity of palmitic acid by the addition of carbon nanotubes, Carbon, 48, 3979-3986.
  • Wang J., Xie H., Xin Z., Li Z., Li Y., Chen L., 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Solar Energy, 84, 339-344.
  • Wu S., Zhu D., Zhang X., Huang J.,2010 Preparation and melting/freezing characteristic of Cu/Parafin nanofluid as phase change material (PCM), Energy Fuels, 24, 1894-1898.
  • Yang J., Yang L., Xu C., Du X., 2016, Experimental sudy of enhancement of thermal energy storage with phase change material, Applied Energy, 169, 164-176.
  • Zeng J.L., Liu Y.Y., Cao Z.X., Zhang J., Zhang Z.H., Sun L.X., Xu F., 2008, Thermal conductitity enhancement of MWCNTs on Pani/Tetradecanol form-stable PCM, Journal of Thermal Analysis and Calorimetry, 91, 443-446.
  • Zhang ., Mang Z., Zhu H., Yanling W., Peng S., 2015, Experimental and numerical study of heat transfer characteristics of a Paraffin/metal foam composite PCM, Energy Procedia, 75-3091-3097.
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Ümit Temel This is me

Betül Çiftçi This is me

Publication Date October 31, 2018
Published in Issue Year 2018 Volume: 38 Issue: 2

Cite

APA Temel, Ü., & Çiftçi, B. (2018). DETERMINATION OF THERMAL PROPERTIES OF A82 ORGANIC PHASE CHANGE MATERIAL EMBEDDED WITH DIFFERENT TYPE NANOPARTICLES. Isı Bilimi Ve Tekniği Dergisi, 38(2), 75-85.