Research Article
BibTex RIS Cite

EJEKTÖR GENLEŞTİRİCİLİ TRANSKRİTİK SOĞUTMA ÇEVRİMİNİN R744, R170 VE R41 İÇİN TERMODİNAMİK PERFORMANSI

Year 2018, Volume: 38 Issue: 2, 111 - 127, 31.10.2018

Abstract

On yıldan fazla bir süredir sıkı çevresel yönetmeliklerin küresel ısınma potansiyeli değeri kısıtlamalarına uyan çevre dostu soğutkanları bulmaya yönelik önemli bir arayış sözkonusudur. Aday akışkanlar arasından R744 (karbondioksit veya CO2), R170 (etan) ve R41 (florometan) bu çalışmada parametrik olarak incelenmek için seçilmiştir. Performans karşılaştırmaları üç soğutkan için ayrı ayrı hem transkritik (süperkritik) soğutma çevriminde hem de bu çevrimin ejektör genleştiricili olarak geliştirildiği soğutma çevriminde yapılmıştır. Birinci adım olarak, gaz soğutucu çıkış sıcaklığının, buharlaştırıcı sıcaklığının ve buharlaştırıcı çıkışındaki kızgın buhar sıcaklığının buharlaştırıcıya göre sıcaklık farkının toplam performans ve yüzdesel genleşme kayıplarına etkileri belirli bir gaz soğutucu basıncı aralığında incelenmiştir. Buharlaştırıcı çıkışındaki kızgın buhar için sıcaklık farkı performans üstündeki en az etkili parametre olarak bulunmuştur; böylece transkritik ejektör genleştiricili soğutma çevrimi sadece buharlaştırıcı sıcaklığı ve gaz soğutucu çıkış sıcaklığı için bir önceki analizlerle aynı gaz soğutucu basıncı aralıklarında incelenmiştir. Termodinamik modeller Matlab® ortamında oluşturulmuştur ve ejektör genleştiricili soğutma çevrimi için ejektör denklemleri sabit basınçta karışım varsayımına göre elde edilmiştir. Düşük kritik sıcaklığa sahip olan bu üç soğutkan arasındaki performans, yüzdesel kısılma kayıpları ve genleşme vanasının yerine ejektörün kullanılması ile oluşan performans iyileştirme potansiyeli kıyaslamaları, literatürdeki önceki araştırmalara katkı yapabilmek adına makalenin temel hedefini oluşturmaktadır.

References

  • Atmaca A. U., Erek A., Çoban M. T., and Ekren O., 2018, Parametric investigation of supercritical refrigeration cycle for R744 and R170, 7th Global Conference on Global Warming (GCGW-2018), İzmir, Turkey.
  • Bilir N. and Ersoy H. K., 2009, Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector, Int. J. Energy Res., 33, 469-480.
  • Brunin O., Feidt M. and Hivet B., 1997, Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump, International Journal of Refrigeration, 20, 308-318.
  • Cox N., Mazur V. and Colbourne D., 2008, New High Pressure Low-GWP Azeotropic and Near-Azeotropic Refrigerant Blends, International Refrigeration and Air Conditioning Conference, Purdue University.
  • Çengel Y. A. and Boles M. A., 2007, Thermodynamics: An Engineering Approach, 6th ed., pp. 448-469, The McGraw-Hill Companies, Inc., USA.
  • Dai B., Dang C., Li M., Tian H. and Ma Y., 2015, Thermodynamic performance assessment of carbon dioxide blends with low-global warming potential (GWP) working fluids for a heat pump water heater, International journal of Refrigeration, 56, 1-14.
  • Di Nicola G., Polonara F., Stryjek R. and Arteconi A., 2011, Performance of cascade cycles working with blends of CO2 + natural refrigerants, International Journal of Refrigeration, 34, 1436-1445.
  • Dinçer İ. and Kanoğlu M., 2010, Refrigeration Systems and Applications, 2nd ed., pp. 109-144, John Wiley & Sons, Ltd., USA.
  • Eames I. W., Aphornratana, S. and Haider H., 1995, A theoretical and experimental study of a small-scale steam jet refrigerator, International Journal of Refrigeration, 18, 378-386.
  • Elbel S. W. and Hrnjak P. S., 2004, Effect of Internal Heat Exchanger on Performance of Transcritical CO2 Systems with Ejector, International Refrigeration and Air Conditioning Conference, Purdue.
  • Elbel S. and Hrnjak P., 2008, Ejector Refrigeration: An Overview of Historical and Present Developments with an Emphasis on Air-Conditioning Applications, International Refrigeration and Air Conditioning Conference, Purdue University, USA.
  • Ersoy H. K. and Sag N. B., 2014, Preliminary experimental results on the R134a refrigeration system using a two-phase ejector as an expander. International Journal of Refrigeration, 43, 97-110.
  • Klein, S. A., 2017, Engineering Equation Solver (EES), Academic Professional V10.294, F-Chart Software, Madison, WI, USA.
  • Kornhauser A. A, 1990, The use of an ejector as a refrigerant expander, International Refrigeration and Air Conditioning Conference, Purdue.
  • Lawrence N., and Elbel S., 2013, Theoretical and practical comparison of two-phase ejector refrigeration cycles including First and Second Law analysis, International Journal of Refrigeration, 36, 1220-1232.
  • Lawrence N., 2012, Analytical and experimental investigation of two-phase ejector cycles using low-pressure refrigerants, Master of Science Thesis, Mechanical Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Lemmon E. W., Huber M. L. and McLinden M. O., 2013, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
  • Li D. Q. and Groll E. A., 2005, Transcritical CO2 refrigeration cycle with ejector-expansion device, International Journal of Refrigeration, 28, 766-773.
  • Li H., Cao F., Bu X., Wang L. and Wang X., 2014, Performance characteristics of R1234yf ejector-expansion refrigeration cycle, Applied Energy, 121, 96-103.
  • Liao J. and Zheng Q., 2014, Thermodynamic analysis of low-temperature power generation transcritical rankine cycle with R41 and CO2, Proceedings of ASME Turbo Expo 2014, Turbine Technical Conference and Exposition, Germany. 126
  • Liu F., Groll E. A. and Li D., 2012, Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles, Energy, 45, 829-839.
  • Liu F., Groll E. A. and Ren J., 2016, Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system, Applied Thermal Engineering, 98, 1061-1069.
  • Lorentzen G., 1995, The use of natural refrigerants: a complete solution to the CFC/HCFC predicament, Int. J. Refrigeration, 18, 190-197.
  • Nehdi E., Kairouani L. and Bouzaina M., 2007, Performance analysis of the vapor compression cycle using ejector as an expander, Int. J. Energy Res., 31, 364-375.
  • Sarkar J., 2008, Optimization of ejector-expansion transcritical CO2 heat pump cycle, Energy, 33, 1399-1406.
  • Smolka J., Bulinski Z., Fic A., Nowak A. J., Banasiak K. and Hafner A., 2013, A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach, Applied Mathematical Modelling, 37, 1208-1224.
  • Wang D., Lu Y., and Tao L., 2017, Thermodynamic analysis of CO2 blends with R41 as an azeotropy refrigerant applied in small refrigerated cabinet and heat pump water heater, Applied Thermal Engineering, 125, 1490–1500.
  • Wang F., Li D. Y. and Zhou Y., 2016, Analysis for the ejector used as expansion valve in vapor compression refrigeration cycle, Applied Thermal Engineering, 96, 576-582.
  • Danfoss, 2008, Transcritical Refrigeration Systems with Carbon Dioxide (CO2), How to design and operate a small-capacity (<10 kW) transcritical CO2 system, Refrigeration & Air conditioning Division.
  • DIRECTIVE 2006/40/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC. Off. J. Eur. Union, 2006.
  • REGULATION (EU) No 517/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006. Off. J. Eur. Union, 2014.
  • The Linde Group. July 25, 2018. Retrieved from http://www.linde-gas.com/en/products_and_supply/refrigerants/index.html

THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41

Year 2018, Volume: 38 Issue: 2, 111 - 127, 31.10.2018

Abstract

For more than a decade, there is a great demand for finding environmentally-friendly refrigerants obeying the global warming potential value restrictions of the tough environmental legislation. Among the candidate working fluids, R744 (carbon dioxide or CO2), R170 (ethane), and R41 (fluoromethane) are selected to be investigated parametrically in this paper. Performance comparison is made for these three working fluids individually in both transcritical (supercritical) refrigeration cycle and modification of this cycle with ejector expansion. As the first step, the effects of the gas cooler outlet temperature, evaporator temperature, and evaporator outlet superheat temperature difference on the overall performance and percentage expansion losses are investigated within a specific gas cooler pressure range. Evaporator outlet superheat temperature difference is found to be the least effective parameter on the performance; hence, secondly, the transcritical ejector expansion refrigeration cycle is analyzed considering only evaporator temperature and gas cooler outlet temperature based on the same gas cooler pressure ranges. Thermodynamic models are constructed in Matlab® and the ejector equations for the ejector expansion refrigeration cycle are established with reference to constant pressure mixing assumption. Comparisons of the performance, percentage expansion losses, and performance improvement potential through the implementation of the ejector instead of the expansion valve among these three refrigerants having low critical temperatures represent the main objective of the paper in order to make contributions to the previous researches in the literature.

References

  • Atmaca A. U., Erek A., Çoban M. T., and Ekren O., 2018, Parametric investigation of supercritical refrigeration cycle for R744 and R170, 7th Global Conference on Global Warming (GCGW-2018), İzmir, Turkey.
  • Bilir N. and Ersoy H. K., 2009, Performance improvement of the vapor compression refrigeration cycle by a two-phase constant area ejector, Int. J. Energy Res., 33, 469-480.
  • Brunin O., Feidt M. and Hivet B., 1997, Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump, International Journal of Refrigeration, 20, 308-318.
  • Cox N., Mazur V. and Colbourne D., 2008, New High Pressure Low-GWP Azeotropic and Near-Azeotropic Refrigerant Blends, International Refrigeration and Air Conditioning Conference, Purdue University.
  • Çengel Y. A. and Boles M. A., 2007, Thermodynamics: An Engineering Approach, 6th ed., pp. 448-469, The McGraw-Hill Companies, Inc., USA.
  • Dai B., Dang C., Li M., Tian H. and Ma Y., 2015, Thermodynamic performance assessment of carbon dioxide blends with low-global warming potential (GWP) working fluids for a heat pump water heater, International journal of Refrigeration, 56, 1-14.
  • Di Nicola G., Polonara F., Stryjek R. and Arteconi A., 2011, Performance of cascade cycles working with blends of CO2 + natural refrigerants, International Journal of Refrigeration, 34, 1436-1445.
  • Dinçer İ. and Kanoğlu M., 2010, Refrigeration Systems and Applications, 2nd ed., pp. 109-144, John Wiley & Sons, Ltd., USA.
  • Eames I. W., Aphornratana, S. and Haider H., 1995, A theoretical and experimental study of a small-scale steam jet refrigerator, International Journal of Refrigeration, 18, 378-386.
  • Elbel S. W. and Hrnjak P. S., 2004, Effect of Internal Heat Exchanger on Performance of Transcritical CO2 Systems with Ejector, International Refrigeration and Air Conditioning Conference, Purdue.
  • Elbel S. and Hrnjak P., 2008, Ejector Refrigeration: An Overview of Historical and Present Developments with an Emphasis on Air-Conditioning Applications, International Refrigeration and Air Conditioning Conference, Purdue University, USA.
  • Ersoy H. K. and Sag N. B., 2014, Preliminary experimental results on the R134a refrigeration system using a two-phase ejector as an expander. International Journal of Refrigeration, 43, 97-110.
  • Klein, S. A., 2017, Engineering Equation Solver (EES), Academic Professional V10.294, F-Chart Software, Madison, WI, USA.
  • Kornhauser A. A, 1990, The use of an ejector as a refrigerant expander, International Refrigeration and Air Conditioning Conference, Purdue.
  • Lawrence N., and Elbel S., 2013, Theoretical and practical comparison of two-phase ejector refrigeration cycles including First and Second Law analysis, International Journal of Refrigeration, 36, 1220-1232.
  • Lawrence N., 2012, Analytical and experimental investigation of two-phase ejector cycles using low-pressure refrigerants, Master of Science Thesis, Mechanical Engineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois.
  • Lemmon E. W., Huber M. L. and McLinden M. O., 2013, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
  • Li D. Q. and Groll E. A., 2005, Transcritical CO2 refrigeration cycle with ejector-expansion device, International Journal of Refrigeration, 28, 766-773.
  • Li H., Cao F., Bu X., Wang L. and Wang X., 2014, Performance characteristics of R1234yf ejector-expansion refrigeration cycle, Applied Energy, 121, 96-103.
  • Liao J. and Zheng Q., 2014, Thermodynamic analysis of low-temperature power generation transcritical rankine cycle with R41 and CO2, Proceedings of ASME Turbo Expo 2014, Turbine Technical Conference and Exposition, Germany. 126
  • Liu F., Groll E. A. and Li D., 2012, Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles, Energy, 45, 829-839.
  • Liu F., Groll E. A. and Ren J., 2016, Comprehensive experimental performance analyses of an ejector expansion transcritical CO2 system, Applied Thermal Engineering, 98, 1061-1069.
  • Lorentzen G., 1995, The use of natural refrigerants: a complete solution to the CFC/HCFC predicament, Int. J. Refrigeration, 18, 190-197.
  • Nehdi E., Kairouani L. and Bouzaina M., 2007, Performance analysis of the vapor compression cycle using ejector as an expander, Int. J. Energy Res., 31, 364-375.
  • Sarkar J., 2008, Optimization of ejector-expansion transcritical CO2 heat pump cycle, Energy, 33, 1399-1406.
  • Smolka J., Bulinski Z., Fic A., Nowak A. J., Banasiak K. and Hafner A., 2013, A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach, Applied Mathematical Modelling, 37, 1208-1224.
  • Wang D., Lu Y., and Tao L., 2017, Thermodynamic analysis of CO2 blends with R41 as an azeotropy refrigerant applied in small refrigerated cabinet and heat pump water heater, Applied Thermal Engineering, 125, 1490–1500.
  • Wang F., Li D. Y. and Zhou Y., 2016, Analysis for the ejector used as expansion valve in vapor compression refrigeration cycle, Applied Thermal Engineering, 96, 576-582.
  • Danfoss, 2008, Transcritical Refrigeration Systems with Carbon Dioxide (CO2), How to design and operate a small-capacity (<10 kW) transcritical CO2 system, Refrigeration & Air conditioning Division.
  • DIRECTIVE 2006/40/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 relating to emissions from air-conditioning systems in motor vehicles and amending Council Directive 70/156/EEC. Off. J. Eur. Union, 2006.
  • REGULATION (EU) No 517/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 April 2014 on fluorinated greenhouse gases and repealing Regulation (EC) No 842/2006. Off. J. Eur. Union, 2014.
  • The Linde Group. July 25, 2018. Retrieved from http://www.linde-gas.com/en/products_and_supply/refrigerants/index.html
There are 32 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Ayşe Atmaca This is me

Aytunç Erek This is me

Orhan Ekren This is me

Mustafa Çoban This is me

Publication Date October 31, 2018
Published in Issue Year 2018 Volume: 38 Issue: 2

Cite

APA Atmaca, A., Erek, A., Ekren, O., Çoban, M. (2018). THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41. Isı Bilimi Ve Tekniği Dergisi, 38(2), 111-127.
AMA Atmaca A, Erek A, Ekren O, Çoban M. THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41. Isı Bilimi ve Tekniği Dergisi. October 2018;38(2):111-127.
Chicago Atmaca, Ayşe, Aytunç Erek, Orhan Ekren, and Mustafa Çoban. “THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41”. Isı Bilimi Ve Tekniği Dergisi 38, no. 2 (October 2018): 111-27.
EndNote Atmaca A, Erek A, Ekren O, Çoban M (October 1, 2018) THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41. Isı Bilimi ve Tekniği Dergisi 38 2 111–127.
IEEE A. Atmaca, A. Erek, O. Ekren, and M. Çoban, “THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41”, Isı Bilimi ve Tekniği Dergisi, vol. 38, no. 2, pp. 111–127, 2018.
ISNAD Atmaca, Ayşe et al. “THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41”. Isı Bilimi ve Tekniği Dergisi 38/2 (October 2018), 111-127.
JAMA Atmaca A, Erek A, Ekren O, Çoban M. THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41. Isı Bilimi ve Tekniği Dergisi. 2018;38:111–127.
MLA Atmaca, Ayşe et al. “THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41”. Isı Bilimi Ve Tekniği Dergisi, vol. 38, no. 2, 2018, pp. 111-27.
Vancouver Atmaca A, Erek A, Ekren O, Çoban M. THERMODYNAMIC PERFORMANCE OF THE TRANSCRITICAL REFRIGERATION CYCLE WITH EJECTOR EXPANSION FOR R744, R170, AND R41. Isı Bilimi ve Tekniği Dergisi. 2018;38(2):111-27.