Research Article
BibTex RIS Cite

BÜTÜNLEŞİK BİNA TASARIMI PARAMETRELERİNİN SAĞLIK KURUMLARININ ENERJİ TÜKETİM PERFORMANSI VE EMİSYON ORANINA ETKİSİNİN BİNA ENERJİ MODELLEME YARDIMIYLA DEĞERLENDİRİLMESİ

Year 2018, Volume: 38 Issue: 2, 151 - 165, 31.10.2018

Abstract

Sağlık kurumlarının temel amacı; bilindiği üzere kişi, aile ve toplumların sağlıklarının korunması, geliştirilmesi, hasta olanların tedavi edilmesi ve tedavi edilenlerin geri kalan yaşamlarını sağlıklı olarak sürdürebilmelerini sağlamaktır. İnsanların sağlık hizmetlerinden yeterince, yerinde, zamanında ve gereksiz masraflardan kaçınarak yararlanmaları önemlidir. Ancak sağlık kuruluşlarına ait binalarda enerji tüketimleri diğer ticari binalara göre çok daha fazladır ve bu nedenle de sağlık kurumlarının temel amacının aksine sağlık hizmetleri maliyeti yükselmektedir. Enerji maliyetinin azaltılmasını sağlamak maksadıyla yapılan bu çalışmada hastanelerdeki toplam enerji tüketimini azaltabilmek için, uygulanabilmesi muhtemel çözümlerin incelenmesi amaçlanmıştır. Bu bağlamda bütünleşik bina tasarımının önemli parametrelerinden olan bina yönü ve cam yüzey oranı ve ayrıca enerji tüketiminde önemli etkisi olan bina kabuğu, HVAC ve aydınlatma sistemleri gibi bina bileşenlerinin iyileştirme olanakları incelenmiştir. Bu doğrultuda iyileştirmelerin her birinin uygulanması durumunda, TS-825 standardı ve Bina Enerji Performansı (BEP) yönetmeliği ve diğer ilgili standart ve yönetmeliklerde belirtilen asgari şartlara uygun yapılan bir binaya göre hangi oranda enerji tasarrufu elde edilebileceği farklı iklim bölgeleri için karşılaştırılmıştır. Bunun için mevcut bir hastane binası prototip olarak kullanılmış ve binanın enerji modeli EDSL TAS programında belirtilen standart ve yönetmeliklere uyumlu şekilde oluşturulmuştur. Daha sonra bu model referans alınarak planlanan iyileştirmelerin her birinin binanın yıllık enerji tüketimi ve emisyon oranına olan etkisi belirlenmiştir. Yapılan çalışma sonucunda hastane binalarında mimari, mekanik ve aydınlatma sistemleri için uygun tasarım ve uygulamaların gerçekleştirilmesi ve yenilenebilir enerji kaynaklarının kullanılması durumunda önemli oranlarda tasarruf elde edilmesinin mümkün olduğu ve emisyonların yaklaşık yarı yarıya azaltılabileceği görülmüştür.

References

  • ASHRAE Standing Standard Project Committee 170, 2008. ASHRAE Standard 170-2008 Ventilation of Health Care Facilities.
  • ASHRAE Standing Standard Project Committee 62.1, 2007. ASHRAE Standard Ventilation for Acceptable Indoor Air Quality. , 1(1041–2336).
  • ASHRAE Standing Standard Project Committee 90.1, 2007. ASHRAE 90.1 (Energy Standard for Buildings Except Low-Rise Residential Buildings). , 1.
  • Balaras, C.A. et al., 2007. Solar air conditioning in Europe-an overview. Renewable and Sustainable Energy Reviews, 11(2), pp.299–314.
  • Bonnema, E. et al., 2016. Advanced Energy Design Guide for Large Hospitals,
  • Bonnema, E. et al., 2010. Large Hospital 50 % Energy Savings : Technical Support Document Large Hospital 50 % Energy Savings : Technical Support Document. , (September).
  • Bujak, J., 2010. Heat consumption for preparing domestic hot water in hospitals. Energy and Buildings, 42(7), pp.1047–1055. Available at: http://dx.doi.org/10.1016/j.enbuild.2010.01.017.
  • Chung, M. & Park, H.C., 2015. Comparison of building energy demand for hotels, hospitals, and offices in Korea. Energy, 92, pp.383–393. Available at: http://dx.doi.org/10.1016/j.energy.2015.04.016.
  • Communities & Local Government, 2008. National Calculation Methodology (NCM) modelling guide (for buildings other than dwellings in England and Wales). Communities and local government, (November), pp.1–34.
  • Energy Star, 2016. Technical Reference U.S. Energy Use Intensity by Property Type. Energy Star Portfolio Manager, (September), pp.1–6.
  • Enteria, N. & Mizutani, K., 2011. The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable and Sustainable Energy Reviews, 15(4), pp.2095–2122. Available at: http://dx.doi.org/10.1016/j.rser.2011.01.013.
  • Hu, S.C., Chen, J.D. & Chuah, Y.K., 2004. Energy Cost and Consumption in a Large Acute Hospital. International Journal on Architectural Science, 5(1), pp.11–19.
  • Jazizadeh, F. et al., 2014. User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy and Buildings, 70, pp.398–410. Available at: http://dx.doi.org/10.1016/j.enbuild.2013.11.066.
  • Kong, X. et al., 2012. Research on the energy performance and indoor environment quality of typical public buildings in the tropical areas of China. Energy and Buildings, 48, pp.155–167. Available at: http://dx.doi.org/10.1016/j.enbuild.2012.01.021.
  • Laustsen, J., 2008. Energy Efficiency Requirements in Building Codes , Energy Efficiency Policies for New Buildings. IEA Information Paper, (March), pp.1–85. Available at: http://www.iea.org/g8/2008/Building_Codes.pdf. Ministry of Public Works and Settlement, 2007. Building Energy Performance Regulation in Turkey,
  • Ndoye, B. & Sarr, M., 2008. Analysis of domestic hot water energy consumption in large buildings under standard conditions in Senegal. Building and Environment, 43(7), pp.1216–1224. Pout, C., 2012. Proposed Carbon Emission Factors and Primary Energy Factors for SAP 2012. , (December 2011).
  • Seo, J. et al., 2014. Optimization of the HVAC system design to minimize primary energy demand. Energy and Buildings, 76, pp.102–108. Available at: http://dx.doi.org/10.1016/j.enbuild.2014.02.034.
  • Teke, A. & Timur, O., 2014. Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals. Renewable and Sustainable Energy Reviews, 33, pp.224–235.
  • Torcellini, P. et al., 2008. DOE Commercial Building Benchmark Models Preprint. Turkish Standard, 2009. TS 825 - Thermal insulation requirements for buildings. , (ICS 91.120.10).
  • U.S. Energy Information Administration, 2002. Managing Energy Costs in Hospitals. E Source. Available at: https://www.eia.gov/.
  • Vakiloroaya, V. et al., 2014. A review of different strategies for HVAC energy saving. Energy Conversion and Management, 77, pp.738–754. Available at: http://dx.doi.org/10.1016/j.enconman.2013.10.023.

ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING

Year 2018, Volume: 38 Issue: 2, 151 - 165, 31.10.2018

Abstract

The main purpose of healthcare facilities is to treat patients, enhance and maintain public health and help patients to spend a healthier life after their treatment. Yet considerably higher energy consumption rates in the healthcare facilities with respect to other commercial building types results in increased service costs which contradicts the mentioned goals. Providing the public with adequate, proper and timely health services may not be possible without cutting down preventable operation costs. In this research possible solutions for reducing energy consumptions of hospital buildings are investigated with the aim of decreasing the energy and consequently service costs. In this regard a prototype hospital building is studied by developing its energy model compliant with local codes and regulations. Later, this model is used as baseline to evaluate the enhancement of integrated design parameters like building orientation and window to wall ratio along with improvements to building systems which have a significant impact on building energy performance such as HVAC, lighting and building envelope systems. Moreover, effectiveness of each parameter is compared for four different climate zones. It was observed that by applying appropriate architectural, electrical and mechanical enhancements and utilizing renewable energy systems significant levels of energy conservation could be achieved and emission rates could be cut down nearly by half.

References

  • ASHRAE Standing Standard Project Committee 170, 2008. ASHRAE Standard 170-2008 Ventilation of Health Care Facilities.
  • ASHRAE Standing Standard Project Committee 62.1, 2007. ASHRAE Standard Ventilation for Acceptable Indoor Air Quality. , 1(1041–2336).
  • ASHRAE Standing Standard Project Committee 90.1, 2007. ASHRAE 90.1 (Energy Standard for Buildings Except Low-Rise Residential Buildings). , 1.
  • Balaras, C.A. et al., 2007. Solar air conditioning in Europe-an overview. Renewable and Sustainable Energy Reviews, 11(2), pp.299–314.
  • Bonnema, E. et al., 2016. Advanced Energy Design Guide for Large Hospitals,
  • Bonnema, E. et al., 2010. Large Hospital 50 % Energy Savings : Technical Support Document Large Hospital 50 % Energy Savings : Technical Support Document. , (September).
  • Bujak, J., 2010. Heat consumption for preparing domestic hot water in hospitals. Energy and Buildings, 42(7), pp.1047–1055. Available at: http://dx.doi.org/10.1016/j.enbuild.2010.01.017.
  • Chung, M. & Park, H.C., 2015. Comparison of building energy demand for hotels, hospitals, and offices in Korea. Energy, 92, pp.383–393. Available at: http://dx.doi.org/10.1016/j.energy.2015.04.016.
  • Communities & Local Government, 2008. National Calculation Methodology (NCM) modelling guide (for buildings other than dwellings in England and Wales). Communities and local government, (November), pp.1–34.
  • Energy Star, 2016. Technical Reference U.S. Energy Use Intensity by Property Type. Energy Star Portfolio Manager, (September), pp.1–6.
  • Enteria, N. & Mizutani, K., 2011. The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable and Sustainable Energy Reviews, 15(4), pp.2095–2122. Available at: http://dx.doi.org/10.1016/j.rser.2011.01.013.
  • Hu, S.C., Chen, J.D. & Chuah, Y.K., 2004. Energy Cost and Consumption in a Large Acute Hospital. International Journal on Architectural Science, 5(1), pp.11–19.
  • Jazizadeh, F. et al., 2014. User-led decentralized thermal comfort driven HVAC operations for improved efficiency in office buildings. Energy and Buildings, 70, pp.398–410. Available at: http://dx.doi.org/10.1016/j.enbuild.2013.11.066.
  • Kong, X. et al., 2012. Research on the energy performance and indoor environment quality of typical public buildings in the tropical areas of China. Energy and Buildings, 48, pp.155–167. Available at: http://dx.doi.org/10.1016/j.enbuild.2012.01.021.
  • Laustsen, J., 2008. Energy Efficiency Requirements in Building Codes , Energy Efficiency Policies for New Buildings. IEA Information Paper, (March), pp.1–85. Available at: http://www.iea.org/g8/2008/Building_Codes.pdf. Ministry of Public Works and Settlement, 2007. Building Energy Performance Regulation in Turkey,
  • Ndoye, B. & Sarr, M., 2008. Analysis of domestic hot water energy consumption in large buildings under standard conditions in Senegal. Building and Environment, 43(7), pp.1216–1224. Pout, C., 2012. Proposed Carbon Emission Factors and Primary Energy Factors for SAP 2012. , (December 2011).
  • Seo, J. et al., 2014. Optimization of the HVAC system design to minimize primary energy demand. Energy and Buildings, 76, pp.102–108. Available at: http://dx.doi.org/10.1016/j.enbuild.2014.02.034.
  • Teke, A. & Timur, O., 2014. Assessing the energy efficiency improvement potentials of HVAC systems considering economic and environmental aspects at the hospitals. Renewable and Sustainable Energy Reviews, 33, pp.224–235.
  • Torcellini, P. et al., 2008. DOE Commercial Building Benchmark Models Preprint. Turkish Standard, 2009. TS 825 - Thermal insulation requirements for buildings. , (ICS 91.120.10).
  • U.S. Energy Information Administration, 2002. Managing Energy Costs in Hospitals. E Source. Available at: https://www.eia.gov/.
  • Vakiloroaya, V. et al., 2014. A review of different strategies for HVAC energy saving. Energy Conversion and Management, 77, pp.738–754. Available at: http://dx.doi.org/10.1016/j.enconman.2013.10.023.
There are 21 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mirparham Pooyanfar This is me

Hüseyin Topal This is me

Publication Date October 31, 2018
Published in Issue Year 2018 Volume: 38 Issue: 2

Cite

APA Pooyanfar, M., & Topal, H. (2018). ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING. Isı Bilimi Ve Tekniği Dergisi, 38(2), 151-165.
AMA Pooyanfar M, Topal H. ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING. Isı Bilimi ve Tekniği Dergisi. October 2018;38(2):151-165.
Chicago Pooyanfar, Mirparham, and Hüseyin Topal. “ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING”. Isı Bilimi Ve Tekniği Dergisi 38, no. 2 (October 2018): 151-65.
EndNote Pooyanfar M, Topal H (October 1, 2018) ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING. Isı Bilimi ve Tekniği Dergisi 38 2 151–165.
IEEE M. Pooyanfar and H. Topal, “ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING”, Isı Bilimi ve Tekniği Dergisi, vol. 38, no. 2, pp. 151–165, 2018.
ISNAD Pooyanfar, Mirparham - Topal, Hüseyin. “ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING”. Isı Bilimi ve Tekniği Dergisi 38/2 (October 2018), 151-165.
JAMA Pooyanfar M, Topal H. ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING. Isı Bilimi ve Tekniği Dergisi. 2018;38:151–165.
MLA Pooyanfar, Mirparham and Hüseyin Topal. “ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING”. Isı Bilimi Ve Tekniği Dergisi, vol. 38, no. 2, 2018, pp. 151-65.
Vancouver Pooyanfar M, Topal H. ASSESSING EFFECTIVENESS OF INTEGRATED BUILDING DESIGN PARAMETERS ON ENERGY PERFORMANCE AND EMISSIONS IN HEALTH CARE FACILITIES BY MEANS OF BUILDING ENERGY MODELLING. Isı Bilimi ve Tekniği Dergisi. 2018;38(2):151-65.