Research Article
BibTex RIS Cite

PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION

Year 2019, Volume: 39 Issue: 2, 101 - 110, 31.10.2019

Abstract

Heat pipes are widely used in thermal management of high heat flux devices due to their ability of removing high heat loads with small temperature differences. While the thermal conductivity of standard metal coolers is approximately 100–500 W/m.K, effective thermal conductivities of heat pipes, which utilize phase-change heat transfer, can reach up to 50,000 W/m.K. In industrial applications, commercially available heat pipes are commonly preferred by thermal engineers due to their low cost and versatility. Thermal performance of a heat pipe is functions of heat pipe type and operating conditions. Selection of the appropriate heat pipe complying with the operating conditions is critical in obtaining satisfactory thermal management. One key point for the utilization of heat pipes is to avoid dryout operation condition in which heat pipes operate no more at the desired heat transport capacity. In the current study, the performance of cylindrical heat pipes with sintered and grooved wick structures, which are among the most commonly used types, is experimentally tested at different heat loads, gravitational orientations and ambient temperatures. Dryout limits of the heat pipes are determined and the relationship between the dryout onset and operating conditions is elucidated. The results reported in the present study are expected to guide thermal engineers for the proper selection and operation of conventional heat pipes.

References

  • Akkus Y., Nguyen C. T., Celebi A. T. and Beskok A., 2019, A First Look at the Performance of Nano-grooved Heat Pipes, Int. J. Heat Mass Tran.,132, 280-287.
  • Akkuş Y. and Dursunkaya Z., 2015, Investigation of Evaporation Models in the Micro Region of Grooved Heat Pipes and a New Solution Procedure, 20th National Conference on Thermal Science and Technology (ULIBTK'15), Paper No: 58.
  • Akkuş Y. and Dursunkaya Z., 2016, A New Approach to Thin Film Evaporation Modeling, Int. J. Heat Mass Tran., 101, 742-748.
  • Akkuş Y., Tarman I. H., Çetin B. and Dursunkaya Z., 2017, Two Dimensional Computational Modeling of Thin Film Evaporation. Int. J. Therm. Sci., 121, 237-248.
  • Alijani H., Çetin B., Akkuş Y. and Dursunkaya Z., 2018, Effect of Design and Operating Parameters on the Thermal Performance of Aluminum Flat Grooved Heat Pipes, Appl. Therm. Eng., 132, 174-187.
  • Alijani H., Çetin B., Akkuş Y. and Dursunkaya Z., 2019, Experimental Thermal Performance Characterization of Flat Grooved Heat Pipes. Heat Transfer Eng., 40, 784-793.
  • Atay A., Sarıarslan B., Kuşçu Y. F., Akkuş Y., Saygan S., Gürer A. T., Çetin B. and Dursunkaya Z., 2017, Experimental Dry Out Characterization of Sintered and Grooved Heat Pipes, 21th National Conference on Thermal Science and Technology (ULIBTK'17), Paper No: 182.
  • Bertoldo Junior J., Vlassov V. V., Genaro G. and Guedes U. T. V., 2015, Dynamic Test Method to Determine the Capillary Limit of Axially Grooved Heat Pipes, Exp. Therm. Fluid Sci., 60, 290-298.
  • Faghri A., 1995, Heat Pipe Science and Technology, Global Digital Press.
  • Gan J. S., Sia T. S., Hung Y. M. and Chin J. K., 2016, Dryout Analysis of Overloaded Microscale Capillary-Driven Two-Phase Heat Transfer Devices, Int. Commun. Heat Mass, 76, 162-170.
  • Garimella S. V. and Harirchian T., 2013, Encyclopedia of Thermal Packaging, Volume 1: Microchannel Heat Sinks for Electronics Cooling, World Scientific.
  • Harris D. K., Palkar A., Wonacott G., Dean R. and Simionescu F., 2010, An Experimental Investigation in the Performance of Water-Filled Silicon Microheat Pipe Arrays, J. Electron. Packaging, 132, 021005.
  • Jiang L., Huang Y., Tang Y., Li Y., Zhou W., Jiang L. and Gao J., 2014a, Fabrication and Thermal Performance of Porous Crack Composite Wick Flattened Heat Pipe, Appl. Therm. Eng., 66, 140-147.
  • Jiang L., Ling J., Jiang L., Tang Y., Li Y., Zhou W. and Gao J., 2014b, Thermal Performance of a Novel Porous Crack Composite Wick Heat Pipe, Energ. Convers. Manage., 81, 10-18.
  • Khalili M. and Shafii M. B., 2016, Experimental and Numerical Investigation of the Thermal Performance of a Novel Sintered-Wick Heat Pipe, Appl. Therm. Eng., 94, 59-75.
  • Kundu P. K., Mondal S., Chakraborty S. and DasGupta S., 2015, Experimental and Theoretical Evaluation of On-Chip Micro Heat Pipe, Nanosc. Microsc. Therm., 19, 75-93.
  • Li X., Wang J., Hu Q., Bao L. and Zhang H., 2013, Experimental and Theoretical Research on Capillary Limit of Micro Heat Pipe with Compound Structure of Sintered Wick on Trapezium-Grooved Substrate, Heat Mass Transfer, 49, 381-389.
  • Li Y., Li Z., Chen C., Yan Y., Zeng Z. and Li B., 2016, Thermal Responses of Heat Pipes with Different Wick Structures under Variable Centrifugal Accelerations, Appl. Therm. Eng., 96, 352-363.
  • Loh C. K., Harris E. and Chou D. J., 2005, Comparative Study of Heat Pipes Performances in Different Orientations, Semiconductor Thermal Measurement and Management Symposium, 21thAnnual IEEE, 191-195.
  • Lv L. and Li J., 2017, Managing High Heat Flux Up to 500 W/cm2 through an Ultra-Thin Flat Heat Pipe with Superhydrophilic Wick, Appl. Therm. Eng., 122, 593-600.
  • Maydanik Y. F., 2005, Loop Heat Pipes, Appl. Therm. Eng., 25, 635-657.
  • Nilson R. H., Tchikanda S. W., Griffiths S. K. and Martinez M. J., 2006, Steady Evaporating Flow in Rectangular Microchannels, Int. J. Heat Mass Tran., 49, 1603–1618.
  • Peterson G. P., Duncan A. B. and Weichold M. H., 1993, Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers, J. Heat Transf., 115, 751-756.
  • Peyghambarzadeh S. M., Shahpouri S., Aslanzadeh N. and Rahimnejad M., 2013, Thermal Performance of Different Working Fluids in a Dual Diameter Circular Heat Pipe, Ain Shams Eng. J., 4, 855-861.
  • Reay D. A., Kew P. A. and McGlen, R. J., 2014, Heat Pipes: Theory, Design and Applications, 6th Edition, Elsevier
  • Russel M. K., Young C., Cotton J. S. and Ching C. Y., 2011, The Effect of Orientation on U-Shaped Grooved and Sintered Wick Heat Pipes, Appl. Therm. Eng., 31, 69-76.
  • Sauciuc I., Mochizuki M., Mashiko K., Saito Y. and Nguyen T., 2000, The Design and Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications, Semiconductor Thermal Measurement and Management Symposium, 16th Annual IEEE, 27-32.
  • Weibel J. A. and Garimella S. V., 2013, Recent Advances in Vapor Chamber Transport Characterization for High-Heat-Flux Applications, in Advances in Heat Transfer, 45, 209-301.
  • Wong S. C. and Chen C. W., 2012, Visualization and Evaporator Resistance Measurement for a Groove-Wicked Flat-Plate Heat Pipe, Int. J. Heat Mass Tran., 55, 2229-2234.

SİNTERLİ VE OLUKLU FİTİL YAPILARINA SAHİP TİCARİ ISI BORULARININ DOĞAL TAŞINIM ALTINDA PERFORMANSLARININ SINANMASI

Year 2019, Volume: 39 Issue: 2, 101 - 110, 31.10.2019

Abstract

Isı boruları, yüksek ısı akılarını küçük sıcaklık farkları ile uzaklaştırabilme yeteneklerinden dolayı, yüksek ısı akısına sahip cihazların termal yönetiminde yaygın olarak kullanılmaktadır. Standart metal soğutucuların ısıl iletkenliği yaklaşık 100–500 W/m.K iken, ısı transferi için faz dönüşümü prensibinden faydalanan ısı borularının ısı iletkenleri 50,000 W/m.K 'e kadar ulaşabilmektedir. Uygun maliyetleri ve çok yönlü kullanımları sebebiyle ticari olarak mevcut olan ısı boruları termal tasarım yapan mühendisler tarafından endüstriyel uygulamalarda sıklıkla kullanılmaktadır. Isı borularının termal performansı tipine ve operasyon koşullarına göre değişmektedir. Sağlıklı bir termal yönetim için operasyon koşullarına uygun olacak şekilde uygun ısı borusu tipinin seçilmesi önemlidir. Isı borusu kullanımında en önemli nokta ısı borusunun kurumasının engellenmesidir, çünkü ısı borusunda kurumanın başlaması ile ısı borusu artık istenilen ısı taşıma kapasitesine ulaşamamaktadır. Bu çalışmada, en yaygın kullanılan tipler olan sinterlenmiş ve oluklu fitil yapısına sahip silindirik ısı borularının performansı, farklı ısı yüklerinde, yer çekimi konfigürasyonlarında ve ortam sıcaklıklarında deneysel olarak test edilmiştir. Bu çalışmada ısı borularının kuruma limitleri belirlenmiş ve kuruma başlangıcı ile çalışma koşulları arasındaki ilişki açıklığa kavuşturulmaya çalışılmıştır. Çalışmada elde edilen sonuçların ısıl tasarım mühendisleri için doğru ısı borusu seçiminde ve ısı borusunun doğru kullanımında bir kılavuz niteliği taşıyacağı düşünülmektedir.

References

  • Akkus Y., Nguyen C. T., Celebi A. T. and Beskok A., 2019, A First Look at the Performance of Nano-grooved Heat Pipes, Int. J. Heat Mass Tran.,132, 280-287.
  • Akkuş Y. and Dursunkaya Z., 2015, Investigation of Evaporation Models in the Micro Region of Grooved Heat Pipes and a New Solution Procedure, 20th National Conference on Thermal Science and Technology (ULIBTK'15), Paper No: 58.
  • Akkuş Y. and Dursunkaya Z., 2016, A New Approach to Thin Film Evaporation Modeling, Int. J. Heat Mass Tran., 101, 742-748.
  • Akkuş Y., Tarman I. H., Çetin B. and Dursunkaya Z., 2017, Two Dimensional Computational Modeling of Thin Film Evaporation. Int. J. Therm. Sci., 121, 237-248.
  • Alijani H., Çetin B., Akkuş Y. and Dursunkaya Z., 2018, Effect of Design and Operating Parameters on the Thermal Performance of Aluminum Flat Grooved Heat Pipes, Appl. Therm. Eng., 132, 174-187.
  • Alijani H., Çetin B., Akkuş Y. and Dursunkaya Z., 2019, Experimental Thermal Performance Characterization of Flat Grooved Heat Pipes. Heat Transfer Eng., 40, 784-793.
  • Atay A., Sarıarslan B., Kuşçu Y. F., Akkuş Y., Saygan S., Gürer A. T., Çetin B. and Dursunkaya Z., 2017, Experimental Dry Out Characterization of Sintered and Grooved Heat Pipes, 21th National Conference on Thermal Science and Technology (ULIBTK'17), Paper No: 182.
  • Bertoldo Junior J., Vlassov V. V., Genaro G. and Guedes U. T. V., 2015, Dynamic Test Method to Determine the Capillary Limit of Axially Grooved Heat Pipes, Exp. Therm. Fluid Sci., 60, 290-298.
  • Faghri A., 1995, Heat Pipe Science and Technology, Global Digital Press.
  • Gan J. S., Sia T. S., Hung Y. M. and Chin J. K., 2016, Dryout Analysis of Overloaded Microscale Capillary-Driven Two-Phase Heat Transfer Devices, Int. Commun. Heat Mass, 76, 162-170.
  • Garimella S. V. and Harirchian T., 2013, Encyclopedia of Thermal Packaging, Volume 1: Microchannel Heat Sinks for Electronics Cooling, World Scientific.
  • Harris D. K., Palkar A., Wonacott G., Dean R. and Simionescu F., 2010, An Experimental Investigation in the Performance of Water-Filled Silicon Microheat Pipe Arrays, J. Electron. Packaging, 132, 021005.
  • Jiang L., Huang Y., Tang Y., Li Y., Zhou W., Jiang L. and Gao J., 2014a, Fabrication and Thermal Performance of Porous Crack Composite Wick Flattened Heat Pipe, Appl. Therm. Eng., 66, 140-147.
  • Jiang L., Ling J., Jiang L., Tang Y., Li Y., Zhou W. and Gao J., 2014b, Thermal Performance of a Novel Porous Crack Composite Wick Heat Pipe, Energ. Convers. Manage., 81, 10-18.
  • Khalili M. and Shafii M. B., 2016, Experimental and Numerical Investigation of the Thermal Performance of a Novel Sintered-Wick Heat Pipe, Appl. Therm. Eng., 94, 59-75.
  • Kundu P. K., Mondal S., Chakraborty S. and DasGupta S., 2015, Experimental and Theoretical Evaluation of On-Chip Micro Heat Pipe, Nanosc. Microsc. Therm., 19, 75-93.
  • Li X., Wang J., Hu Q., Bao L. and Zhang H., 2013, Experimental and Theoretical Research on Capillary Limit of Micro Heat Pipe with Compound Structure of Sintered Wick on Trapezium-Grooved Substrate, Heat Mass Transfer, 49, 381-389.
  • Li Y., Li Z., Chen C., Yan Y., Zeng Z. and Li B., 2016, Thermal Responses of Heat Pipes with Different Wick Structures under Variable Centrifugal Accelerations, Appl. Therm. Eng., 96, 352-363.
  • Loh C. K., Harris E. and Chou D. J., 2005, Comparative Study of Heat Pipes Performances in Different Orientations, Semiconductor Thermal Measurement and Management Symposium, 21thAnnual IEEE, 191-195.
  • Lv L. and Li J., 2017, Managing High Heat Flux Up to 500 W/cm2 through an Ultra-Thin Flat Heat Pipe with Superhydrophilic Wick, Appl. Therm. Eng., 122, 593-600.
  • Maydanik Y. F., 2005, Loop Heat Pipes, Appl. Therm. Eng., 25, 635-657.
  • Nilson R. H., Tchikanda S. W., Griffiths S. K. and Martinez M. J., 2006, Steady Evaporating Flow in Rectangular Microchannels, Int. J. Heat Mass Tran., 49, 1603–1618.
  • Peterson G. P., Duncan A. B. and Weichold M. H., 1993, Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers, J. Heat Transf., 115, 751-756.
  • Peyghambarzadeh S. M., Shahpouri S., Aslanzadeh N. and Rahimnejad M., 2013, Thermal Performance of Different Working Fluids in a Dual Diameter Circular Heat Pipe, Ain Shams Eng. J., 4, 855-861.
  • Reay D. A., Kew P. A. and McGlen, R. J., 2014, Heat Pipes: Theory, Design and Applications, 6th Edition, Elsevier
  • Russel M. K., Young C., Cotton J. S. and Ching C. Y., 2011, The Effect of Orientation on U-Shaped Grooved and Sintered Wick Heat Pipes, Appl. Therm. Eng., 31, 69-76.
  • Sauciuc I., Mochizuki M., Mashiko K., Saito Y. and Nguyen T., 2000, The Design and Testing of the Super Fiber Heat Pipes for Electronics Cooling Applications, Semiconductor Thermal Measurement and Management Symposium, 16th Annual IEEE, 27-32.
  • Weibel J. A. and Garimella S. V., 2013, Recent Advances in Vapor Chamber Transport Characterization for High-Heat-Flux Applications, in Advances in Heat Transfer, 45, 209-301.
  • Wong S. C. and Chen C. W., 2012, Visualization and Evaporator Resistance Measurement for a Groove-Wicked Flat-Plate Heat Pipe, Int. J. Heat Mass Tran., 55, 2229-2234.
There are 29 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Atakan Atay This is me

Büşra Sarıarslan This is me

Yiğit Kuşçu This is me

Samet Saygan This is me

Yiğit Akkuş This is me

Türker Gürer This is me

Barbaros Çetin This is me

Zafer Dursunkaya This is me

Publication Date October 31, 2019
Published in Issue Year 2019 Volume: 39 Issue: 2

Cite

APA Atay, A., Sarıarslan, B., Kuşçu, Y., Saygan, S., et al. (2019). PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION. Isı Bilimi Ve Tekniği Dergisi, 39(2), 101-110.
AMA Atay A, Sarıarslan B, Kuşçu Y, Saygan S, Akkuş Y, Gürer T, Çetin B, Dursunkaya Z. PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION. Isı Bilimi ve Tekniği Dergisi. October 2019;39(2):101-110.
Chicago Atay, Atakan, Büşra Sarıarslan, Yiğit Kuşçu, Samet Saygan, Yiğit Akkuş, Türker Gürer, Barbaros Çetin, and Zafer Dursunkaya. “PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION”. Isı Bilimi Ve Tekniği Dergisi 39, no. 2 (October 2019): 101-10.
EndNote Atay A, Sarıarslan B, Kuşçu Y, Saygan S, Akkuş Y, Gürer T, Çetin B, Dursunkaya Z (October 1, 2019) PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION. Isı Bilimi ve Tekniği Dergisi 39 2 101–110.
IEEE A. Atay, B. Sarıarslan, Y. Kuşçu, S. Saygan, Y. Akkuş, T. Gürer, B. Çetin, and Z. Dursunkaya, “PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION”, Isı Bilimi ve Tekniği Dergisi, vol. 39, no. 2, pp. 101–110, 2019.
ISNAD Atay, Atakan et al. “PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION”. Isı Bilimi ve Tekniği Dergisi 39/2 (October 2019), 101-110.
JAMA Atay A, Sarıarslan B, Kuşçu Y, Saygan S, Akkuş Y, Gürer T, Çetin B, Dursunkaya Z. PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION. Isı Bilimi ve Tekniği Dergisi. 2019;39:101–110.
MLA Atay, Atakan et al. “PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION”. Isı Bilimi Ve Tekniği Dergisi, vol. 39, no. 2, 2019, pp. 101-10.
Vancouver Atay A, Sarıarslan B, Kuşçu Y, Saygan S, Akkuş Y, Gürer T, Çetin B, Dursunkaya Z. PERFORMANCE ASSESSMENT OF COMMERCIAL HEAT PIPES WITH SINTERED AND GROOVED WICKS UNDER NATURAL CONVECTION. Isı Bilimi ve Tekniği Dergisi. 2019;39(2):101-10.