Research Article
BibTex RIS Cite

YOĞUNLAŞMIŞ ISINMALI VE ELMAS ALTTAŞLI GAN HEMT’LERİN ISI DAĞITMA PERFORMANSI

Year 2019, Volume: 39 Issue: 2, 111 - 119, 31.10.2019

Abstract

Elmas yüksek güç ve frekans AlGaN/GaN yüksek elektron mobiliteli transistörler (HEMTs) için son zamanlarda tercih edilen alttaş malzemesidir. Yüksek ısıl iletkenliği ile elmas aygıt güvenirliği için gerekli olan elektron kanalındaki yoğunlaşmış ısının dışarı taşınmasında iyileştirmeler sunar. Önceki SiC ve elmas alttaşlara sahip GaN aygıtların ısıl karşılaştırma çalışmaları deneysel ve modelleme konusundaki sınırlamalar nedeniyle büyük ve tep tip ısı kaynağına sahip aygıtlarla sınırlandırılmıştır. Bu çalışmada sunulan analitik çalışma ile bu sınırlamaların üstesinden gelerek SiC ve elmas alttaşlı ve yoğunlaşmış ısınmalı GaN aygıtların ısıl karşılaştırmalarını daha detaylı bir şekilde gerçekleştrimeye olanak sağlar. Isı dağılımına etki eden katmanlar arası ısıl dirençlerin, GaN katman kalınlıklarının ve çok sayıda parmağa sahip aygıtlardaki parmak sayılarının etkileri bu çalışmada incelenmiştir.

References

  • Anaya J., Sun H., Pomeray J., and Kuball M., 2016, Thermal management of GaN-on-diamond high electron mobility transistors: Effect of the nanostructure in the diamond near nucleation region, Proc. of the 15th InterSociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, 1558–1565.
  • Angadi M. A., Watanabe T., Bodapati A., Xiao X., Keblinski P., Schelling P. K., and Phillpot S. R., 2006, Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films, J. of Applied Physics, 99(11).
  • Azarifar M. and Donmezer N., 2017, A multiscale analytical correction technique for two-dimensional thermal models of AlGaN/GaN HEMTs, Microelectronics Reliability, 74.
  • Cho J., Bozorg-Grayeli E., Altman. D. H., Asheghi M., Goodson K., 2012, Low thermal resistances at GaN-SiC interfaces for HEMT technology, IEEE Electron Device Letters, 33(3), 378–380.
  • Cho J., Li Z., Bozorg-Grayeli E., Kodama. T., Francis D., Ejeckham F., Faili F., Asheghi M., and Goodson K., 2012, Thermal characterization of GaN-on-diamond substrates for HEMT applications, Proc. of the 11th InterSociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, 435–439.
  • Cho J., Li Z., Bozorg-Grayeli E., Kodama. T., Francis D., Ejeckham F., Faili F., Asheghi M., and Goodson K., Improved thermal interfaces of GaN-Diamond composite substrates for HEMT applications’, IEEE Trans. on Components, Packaging, and Manufacturing Technology, 3(1), 79–85.
  • Dumka D.C., Chou T.M., Jimenez J.L., Fanning D.M., Francis D., Faili F., Ejeckam F., Pomeroy J.W, and Kuball M., 2013, Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications, IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, Monterey.
  • Dussaigne A., Gonschorek M., Malinverni M., Py M. A., Martin D., Mouti1 A., Stadelmann P., and Grandjean N., 2010, High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate, Japanese J. of Applied Physics, 49, 0610011–0610014.
  • Ejeckam F., Francis D., Faili F., Dodson J., Twitchen D. J., Bolliger B., Babic D., 2014, Diamond for enhanced GaN device performance, Proc. of the 13th InterSociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 1206–1209.
  • Felbinger J.G., Sun Y., Eastman L. F., Wasserbauer J., Faili F., Babic D., Francis D., and Ejeckham F., 2007, Comparison of GaN HEMTs on diamond and SiC substrates, IEEE Electron Device Letters, 28(11), 948–950.
  • Francis D., Faili F., Babića D., Ejeckam F., Nurmikko A., Maris H., 2010, Formation and characterization of 4-inch GaN-on-diamond substrates, Diamond and Related Materials, 19(2–3), 229–233.
  • Guo H., Kong, Y. and Chen, T., 2017, Thermal simulation of high power GaN-on-diamond substrates for HEMT applications’, Diamond and Related Materials, 73, 260–266.
  • Hirama K., Kasu M. and Taniyasu Y., 2012, RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond, IEEE Electron Device Letters, 33(4), 513–515.
  • Jessen G.H., Gillespie J.K., Via G.D., Crespo A., Langley D., Wasserbauer J., Faili F., Francis D., Babic D., Ejeckam F., Guo S., and Eliashevich I., 2006, AlGaN/GaN HEMT on diamond technology demonstration, IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, 271–274.
  • Killat N., Pomeroy J.W., Jimenez J.L., and Kuball M., 2014, Thermal properties of AlGaN/GaN high electron mobility transistors on 4H and 6H SiC substrates, Physica Status Solidi(a), 211(12), 2844–2847.
  • Lidow A., 2013, GaN transistors - The best emerging technology for power conversion from DC through RF, IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, Monterey.
  • Manoi A., Pomeroy J.W., Killat N., and Kuball M., 2010, Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: Implications of the nucleation layer microstructure, IEEE Electron Device Letters, 31(12), 1395–1397.
  • Muzychka Y.S., 2006, Influence coefficient method for calculating discrete heat source temperature on finite convectively cooled substrates, IEEE Trans. on Components and Packaging Technologies, 29(3), 636–643.
  • Muzychka Y.S., Bagnall K.R. and Wang, E.N., 2013, Thermal spreading resistance and heat source temperature in compound orthotropic systems with interfacial resistance, IEEE Trans. on Components, Packaging and Manufacturing Technology, 3(11), 1826–1841.
  • Pomeroy J.W., Bernardoni M., Dumka D.C., Fanning D.M., and Kuball M., 2014, Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping, Applied Physics Letters, 104(8).
  • Pomeroy J.W., Uren M.J., Lambert B., and Kuball M., 2015, Operating channel temperature in GaN HEMTs: DC versus RF accelerated life testing, Microelectronics Reliability, 2505–2510. 119
  • Rajasingam S., Pomeroy J.W., Kuball M., Uren M., Martin T., Herbert D.C. , Hilton K.P., and Balmer R.S., 2004, Micro-Raman temperature measurements for electric field assessment in active AlGaN-GaN HFETs, IEEE Electron Device Letters, 25(7), 456–458.
  • Sun H., Simon R.B., Pomeroy J.W., Francis D., Faili F., Twitchen D.J., and Kuball M., 2015, Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications, Applied Physics Letters, 106(11).
  • Venkatachalam A., James W.T., and Graham, S., 2011, Electro-thermo-mechanical modeling of GaN-based HFETs and MOSHFETs, Semiconductor

THERMAL SPREADING PERFORMANCE OF GaN-ON-DIAMOND SUBSTRATE HEMTS WITH LOCALIZED JOULE HEATING

Year 2019, Volume: 39 Issue: 2, 111 - 119, 31.10.2019

Abstract

Diamond is the new substrate of choice for high power/frequency AlGaN/GaN high electron mobility transistors (HEMTs). Due to its high thermal conductivity, diamond presents improvements in removing concentrated heat from the electron channel, a necessity for reliable performance of these devices. Previous thermal performance comparison studies of GaN-on-SiC and GaN-on-diamond devices are limited to devices with often large and identical heat source regions due to modeling and experimental limitations. Analytical procedure presented in this study overcome these limitations and provide a more comprehensive thermal spreading performance analysis of GaN-on-SiC and GaN-on-diamond HEMTs with localized Joule heating. Important thermal spreading factors such as thermal boundary resistance, GaN buffer layer thickness, and multifinger arrangements are also investigated in this study.

References

  • Anaya J., Sun H., Pomeray J., and Kuball M., 2016, Thermal management of GaN-on-diamond high electron mobility transistors: Effect of the nanostructure in the diamond near nucleation region, Proc. of the 15th InterSociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, 1558–1565.
  • Angadi M. A., Watanabe T., Bodapati A., Xiao X., Keblinski P., Schelling P. K., and Phillpot S. R., 2006, Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films, J. of Applied Physics, 99(11).
  • Azarifar M. and Donmezer N., 2017, A multiscale analytical correction technique for two-dimensional thermal models of AlGaN/GaN HEMTs, Microelectronics Reliability, 74.
  • Cho J., Bozorg-Grayeli E., Altman. D. H., Asheghi M., Goodson K., 2012, Low thermal resistances at GaN-SiC interfaces for HEMT technology, IEEE Electron Device Letters, 33(3), 378–380.
  • Cho J., Li Z., Bozorg-Grayeli E., Kodama. T., Francis D., Ejeckham F., Faili F., Asheghi M., and Goodson K., 2012, Thermal characterization of GaN-on-diamond substrates for HEMT applications, Proc. of the 11th InterSociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, 435–439.
  • Cho J., Li Z., Bozorg-Grayeli E., Kodama. T., Francis D., Ejeckham F., Faili F., Asheghi M., and Goodson K., Improved thermal interfaces of GaN-Diamond composite substrates for HEMT applications’, IEEE Trans. on Components, Packaging, and Manufacturing Technology, 3(1), 79–85.
  • Dumka D.C., Chou T.M., Jimenez J.L., Fanning D.M., Francis D., Faili F., Ejeckam F., Pomeroy J.W, and Kuball M., 2013, Electrical and thermal performance of AlGaN/GaN HEMTs on diamond substrate for RF applications, IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, Monterey.
  • Dussaigne A., Gonschorek M., Malinverni M., Py M. A., Martin D., Mouti1 A., Stadelmann P., and Grandjean N., 2010, High-mobility AlGaN/GaN two-dimensional electron gas heterostructure grown on (111) single crystal diamond substrate, Japanese J. of Applied Physics, 49, 0610011–0610014.
  • Ejeckam F., Francis D., Faili F., Dodson J., Twitchen D. J., Bolliger B., Babic D., 2014, Diamond for enhanced GaN device performance, Proc. of the 13th InterSociety Conf. on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, 1206–1209.
  • Felbinger J.G., Sun Y., Eastman L. F., Wasserbauer J., Faili F., Babic D., Francis D., and Ejeckham F., 2007, Comparison of GaN HEMTs on diamond and SiC substrates, IEEE Electron Device Letters, 28(11), 948–950.
  • Francis D., Faili F., Babića D., Ejeckam F., Nurmikko A., Maris H., 2010, Formation and characterization of 4-inch GaN-on-diamond substrates, Diamond and Related Materials, 19(2–3), 229–233.
  • Guo H., Kong, Y. and Chen, T., 2017, Thermal simulation of high power GaN-on-diamond substrates for HEMT applications’, Diamond and Related Materials, 73, 260–266.
  • Hirama K., Kasu M. and Taniyasu Y., 2012, RF high-power operation of AlGaN/GaN HEMTs epitaxially grown on diamond, IEEE Electron Device Letters, 33(4), 513–515.
  • Jessen G.H., Gillespie J.K., Via G.D., Crespo A., Langley D., Wasserbauer J., Faili F., Francis D., Babic D., Ejeckam F., Guo S., and Eliashevich I., 2006, AlGaN/GaN HEMT on diamond technology demonstration, IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, 271–274.
  • Killat N., Pomeroy J.W., Jimenez J.L., and Kuball M., 2014, Thermal properties of AlGaN/GaN high electron mobility transistors on 4H and 6H SiC substrates, Physica Status Solidi(a), 211(12), 2844–2847.
  • Lidow A., 2013, GaN transistors - The best emerging technology for power conversion from DC through RF, IEEE Compound Semiconductor Integrated Circuit Symposium Technical Digest, Monterey.
  • Manoi A., Pomeroy J.W., Killat N., and Kuball M., 2010, Benchmarking of thermal boundary resistance in AlGaN/GaN HEMTs on SiC substrates: Implications of the nucleation layer microstructure, IEEE Electron Device Letters, 31(12), 1395–1397.
  • Muzychka Y.S., 2006, Influence coefficient method for calculating discrete heat source temperature on finite convectively cooled substrates, IEEE Trans. on Components and Packaging Technologies, 29(3), 636–643.
  • Muzychka Y.S., Bagnall K.R. and Wang, E.N., 2013, Thermal spreading resistance and heat source temperature in compound orthotropic systems with interfacial resistance, IEEE Trans. on Components, Packaging and Manufacturing Technology, 3(11), 1826–1841.
  • Pomeroy J.W., Bernardoni M., Dumka D.C., Fanning D.M., and Kuball M., 2014, Low thermal resistance GaN-on-diamond transistors characterized by three-dimensional Raman thermography mapping, Applied Physics Letters, 104(8).
  • Pomeroy J.W., Uren M.J., Lambert B., and Kuball M., 2015, Operating channel temperature in GaN HEMTs: DC versus RF accelerated life testing, Microelectronics Reliability, 2505–2510. 119
  • Rajasingam S., Pomeroy J.W., Kuball M., Uren M., Martin T., Herbert D.C. , Hilton K.P., and Balmer R.S., 2004, Micro-Raman temperature measurements for electric field assessment in active AlGaN-GaN HFETs, IEEE Electron Device Letters, 25(7), 456–458.
  • Sun H., Simon R.B., Pomeroy J.W., Francis D., Faili F., Twitchen D.J., and Kuball M., 2015, Reducing GaN-on-diamond interfacial thermal resistance for high power transistor applications, Applied Physics Letters, 106(11).
  • Venkatachalam A., James W.T., and Graham, S., 2011, Electro-thermo-mechanical modeling of GaN-based HFETs and MOSHFETs, Semiconductor
There are 24 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mohammad Azarıfar This is me

Doğacan Kara This is me

Nazlı Dönmezer This is me

Publication Date October 31, 2019
Published in Issue Year 2019 Volume: 39 Issue: 2

Cite

APA Azarıfar, M., Kara, D., & Dönmezer, N. (2019). THERMAL SPREADING PERFORMANCE OF GaN-ON-DIAMOND SUBSTRATE HEMTS WITH LOCALIZED JOULE HEATING. Isı Bilimi Ve Tekniği Dergisi, 39(2), 111-119.