Research Article
BibTex RIS Cite

PİN FİN ŞEKLİ VE BÜYÜKLÜĞÜNÜN TÜRBİN KANADI FİRAR KENARINDAKİ AKIŞ VE ISI TRANSFERİNE ETKİLERİ

Year 2019, Volume: 39 Issue: 2, 191 - 207, 31.10.2019

Abstract

Modern türbin kanatlarının firar kenarlarının soğutulmasında, adalarla desteklenen film soğutması oluklarının bulunduğu kesik basınç kenarları ve soğutma kanallarının içine yerleştirilen pin fin yapıları kullanılmaktadır. Bu soğutma konfigürasyonlarını termal açıdan inceleyen pek çok çalışma olmasına rağmen, aerodinamik açıdan inceleme yapan çalışmalar sınırlı sayıdadır. Bu çalışma bir film soğutması konfigürasyonunun, pin dizini şekil ve büyüklüğünün optimum kombinasyonunu belirlemek için yapılan detaylı bir hesaplamalı incelemesini sunmaktadır. Analizler, firar kenarındaki kesik bölgenin hem iç hem dış yüzeylerini kapsayacak şekilde yapılmış ve sonuçlar hem aerodinamik hem de termal açıdan değerlendirilmiştir. Çalışılan konfigürasyonun iç bölgesi, saptırılmış pin dizinleri ve kesik basınç kenarına açılan olukların önünde bulunan kanat şeklindeki tıkayıcılardan oluşmaktadır. Çalışmada, dairesel, eliptik ve bu tür konfigürasyonlarda nadir olarak çalışılmış olan kanat şekillerine sahip ve farklı büyüklüklerde olan pinler kullanılmış ve karşılaştırmalar için beş farklı model oluşturulmuştur. Firar kenarı yüzeylerinde, olukların civarında ve kesik dış yüzey bölgesindeki akış özellikleri, basınç kayıpları ve ısı transferi karakteristiği incelenmiştir. Elde edilen sonuçlar kanat şeklindeki pinlerin aynı büyüklükteki diğer şekilli pinlere göre, iç akışta basınç kayıplarını azalttığını göstermektedir. Bununla birlikte pin dizinleri, firar kenarı ayrışma bölgesindeki hız konturlarında küçük farklar oluşturmakta ve burada benzer basınç kayıplarına sebep olmaktadır. Küçük pinlerin, oluk çıkışlarındaki daha düşük sıcaklık seviyelerinden ötürü, firar kenarı ayrışma yüzeyinde biraz daha yüksek film soğutması verimliliği sağladığı görülmüştür. Sonuç olarak, kanat şeklindeki pinler kanat içindeki dizinde aerodinamik kayıpları azalttığı için, hedeflenen soğutma performansını elde etmek üzere bu pin şeklinin boyut optimizasyonunun yapılması tasarım aşamasında uygun bir yaklaşım olacaktır.

References

  • Ames, F. E., and Dvorak L. A., 2006, Turbulent Transport in Pin Fin Arrays: Experimental Data and Predictions, J. of Turbomachinery, Vol.128, No.1, pp.71-81.
  • ANSYS CFX-Solver Theory Guide, Release 18.2, Canonsburg, PA, ANSYS, Inc., 2017. Armstrong, J., and Winstanley, D., 1988, A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications, J. of Turbomachinery, Vol.110, No.1, pp.94–103.
  • Arora,S., and Abdel-Messeh,W.,1990, Characteristics of Partial Length Circular Pin Fins as Heat Transfer Augmentors for Airfoil Internal Cooling Passages, J. of Turbomachinery, Vol.112(3), pp.559–565.
  • Benson, M., Elkins, C., Yapa, S., Ling, J., Eaton, J., 2012, Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling, Exp. Fluids, Vol.52(6), pp.1415-1430.
  • Brigham, B. A., and VanFossen, G. J., 1984, Length-to-Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer, J. of Engineering for Gas Turbines and Power, Vol.106, pp.241– 245.
  • Chen, Z., Li, Q., Meier, D., Warnecke, H.-J., 1997, Convective Heat Transfer and Pressure Loss in Rectangular Ducts With Drop-Shaped Pin Fins, J. of Heat and Mass Transfer, Vol.33(3), pp.219–224.
  • Chyu, M. K., 1990, Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin End Wall Fillet, J. of Heat Transfer, Vol.112, No.4, pp.926-932.
  • Chyu, M., Hsing, Y., Natarajan, V., 1998, Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel, J. of Turbomachinery, Vol.120, pp.362–367.
  • Fernandes, R., Ricklick, M., Prasad, A., and Pai, Y., 2017, Benchmarking Reynolds Averaged Navier–Stokes Turbulence Models in Internal Pin Fin Channels, J. of Thermophysics and Heat Transfer, Vol.31, No.4, pp.976-982.
  • Han, J. C., Dutta, S., and Ekkad, S., 2013, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed., CRC Press, Boca Raton, FL, pp.1-26.
  • Horbach, T., Schulz, A., Bauer, H.-J., 2010, Trailing Edge Film Cooling of Gas Turbine Airfoils Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer, Heat Transfer Research, Vol.41, No.8.
  • Horbach, T., Schulz, A., Bauer, H.-J., 2011, Trailing Edge Film Cooling of Gas Turbine Airfoils External Cooling Performance of Various Internal Pin Fin Configurations, J. of Turbomachinery, Vol.133, No.4, p.041006.
  • Hylton, L. D., Mihelc, M. S., Turner, E. R., Nealy, D. A., York, R. E., 1983, Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes, NASA, Contractor Report 168015.
  • Kacker, S., and Whitelaw, J., 1969, An Experimental Investigation of the Influence of Slot-Lip Thickness on the Impervious-Wall Effectiveness of the Uniform-Density, Two-Dimensional Wall Jet, Int. J. of Heat and Mass Transfer, Vol.12, No.9, pp.1196–1201.
  • Li, Q., Chen, Z., Flechtner, U., Warnecke, H.-J., 1998, Heat Transfer and Pressure Drop Characteristics in Rectangular Channels With Elliptic Pin Fins, Int. J. of Heat and Fluid Flow, Vol.19(3), pp.245–250.
  • Ligrani, P., M., and Mahmood, G., I., 2003, Variable Property Nusselt Numbers in a Channel with Pins, J. of Thermophysics and Heat Transfer, Vol.17, No.1, pp.103-111.
  • Ling, J., Yapa, S. D., Benson, M. J., Elkins, C. J., Eaton, J. K., 2013, Three-Dimensional Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot, J. of Turbomachinery, Vol.135(3), pp.031018.
  • Ling, J., Elkins, C., and Eaton, J., 2014, Improvements in Turbulent Scalar Mixing Modeling for Trailing Edge Slot Film Cooling Geometries: A Combined Experimental and Computational Approach, Stanford University, Report No. TF-138, CA.
  • Ling, J., Elkins, C. J., Eaton, J. K., 2015, Optimal Turbulent Schmidt Number For RANS Modeling of Trailing Edge Slot Film Cooling, J. of Engineering for Gas Turbines and Power, Vol.137(7), pp.072605.
  • Martini, P., Schulz, A., Bauer, H. J., Whitney, C. F., 2006, Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils, J. of Turbomachinery, Vol.128(2), pp.292-299.
  • Menter, F.R., Kuntz, M., Langtry, R., 2003, Ten Years of Industrial Experience With the SST Turbulence Model, In Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Turkey, pp.625–632.
  • Metzger, D., Fan, C., Haley, S., 1984, Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays, J. of Engineering for Gas Turbines and Power, Vol.106, pp.252–257.
  • Metzger, D., Shepard, W., Haley, S., 1986, Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence, Proceedings of the ASME Int. Gas Turbine Conference and Exhibit, Dusseldorf, Vol.4: Heat Transfer; Electric Power, 86-GT-132.
  • Sivasegaram, S., and Whitelaw, J., 1969, Film cooling slots: the importance of lip thickness and injection angle, J. Mechanical Engineering Science, Vol.11, No.1, pp.22–27.
  • Taslim, M., Spring, S., Mehlman, B., 1992, Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries, J. of Thermo- physics and Heat Transfer, Vol.6, No.2, pp.302–307.
  • Uzol, O., and Camci, C., 2005, Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays, J. of Heat Transfer, 127, No.5, pp.458-471.
  • Wang F., Zhang J., Wang S., 2012, Investigation on Flow and Heat Transfer Characteristics in Rectangular Channel With Drop-Shaped Pin Fins, Propulsion and Power Research, Vol.1(1), pp.64-70.

EFFECTS OF PIN FIN SHAPE AND SIZE ON TURBINE BLADE TRAILING EDGE FLOW AND HEAT TRANSFER

Year 2019, Volume: 39 Issue: 2, 191 - 207, 31.10.2019

Abstract

In modern turbine blades, pressure-side cutbacks with film-cooling slots stiffened with lands and pin fins that are embedded in passages are used to cool trailing edges. There are many studies that have investigated these cooling configurations from a thermal perspective, while only a limited number have been concerned with the aerodynamic aspects. This study presents a thorough computational investigation of a film-cooling configuration to determine the optimum combination of shape and size of pin arrays. The analyses are performed to include both internal and external surfaces of the trailing-edge cutback region and the results are evaluated from both aerodynamics and thermal aspects. The internal structure of the configuration studied consists of staggered arrays of pins and airfoil-shaped blockages in front of the slot exits that open into a pressure-side cutback region. The pins used are of circular, elliptical, or airfoil shapes that are rarely studied in such configurations, and of different sizes, resulting in five different models for comparisons. The flow features, pressure losses and heat transfer characteristics inside of the trailing-edge surfaces and in the vicinity of the slots and on the external cutback region are examined. The airfoil-shaped pins are found to decrease the pressure losses in internal flow compared to the other pin shapes of similar size. However, the pin arrays produce minor differences in the velocity contours in the breakout region, resulting in similar pressure loss trends here. The small-sized pins are found to demonstrate slightly higher film-cooling effectiveness on the breakout surface due to lower temperatures at the slot exit. It can be inferred from the results that, since the airfoil-shaped pin reduces the aerodynamic penalty across the internal pin array, performing an optimization on the size of these pins to achieve the desired cooling performance could be a reasonable approach in the design process.

References

  • Ames, F. E., and Dvorak L. A., 2006, Turbulent Transport in Pin Fin Arrays: Experimental Data and Predictions, J. of Turbomachinery, Vol.128, No.1, pp.71-81.
  • ANSYS CFX-Solver Theory Guide, Release 18.2, Canonsburg, PA, ANSYS, Inc., 2017. Armstrong, J., and Winstanley, D., 1988, A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications, J. of Turbomachinery, Vol.110, No.1, pp.94–103.
  • Arora,S., and Abdel-Messeh,W.,1990, Characteristics of Partial Length Circular Pin Fins as Heat Transfer Augmentors for Airfoil Internal Cooling Passages, J. of Turbomachinery, Vol.112(3), pp.559–565.
  • Benson, M., Elkins, C., Yapa, S., Ling, J., Eaton, J., 2012, Effects of Varying Reynolds Number, Blowing Ratio, and Internal Geometry on Trailing Edge Cutback Film Cooling, Exp. Fluids, Vol.52(6), pp.1415-1430.
  • Brigham, B. A., and VanFossen, G. J., 1984, Length-to-Diameter Ratio and Row Number Effects in Short Pin Fin Heat Transfer, J. of Engineering for Gas Turbines and Power, Vol.106, pp.241– 245.
  • Chen, Z., Li, Q., Meier, D., Warnecke, H.-J., 1997, Convective Heat Transfer and Pressure Loss in Rectangular Ducts With Drop-Shaped Pin Fins, J. of Heat and Mass Transfer, Vol.33(3), pp.219–224.
  • Chyu, M. K., 1990, Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin End Wall Fillet, J. of Heat Transfer, Vol.112, No.4, pp.926-932.
  • Chyu, M., Hsing, Y., Natarajan, V., 1998, Convective Heat Transfer of Cubic Fin Arrays in a Narrow Channel, J. of Turbomachinery, Vol.120, pp.362–367.
  • Fernandes, R., Ricklick, M., Prasad, A., and Pai, Y., 2017, Benchmarking Reynolds Averaged Navier–Stokes Turbulence Models in Internal Pin Fin Channels, J. of Thermophysics and Heat Transfer, Vol.31, No.4, pp.976-982.
  • Han, J. C., Dutta, S., and Ekkad, S., 2013, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed., CRC Press, Boca Raton, FL, pp.1-26.
  • Horbach, T., Schulz, A., Bauer, H.-J., 2010, Trailing Edge Film Cooling of Gas Turbine Airfoils Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer, Heat Transfer Research, Vol.41, No.8.
  • Horbach, T., Schulz, A., Bauer, H.-J., 2011, Trailing Edge Film Cooling of Gas Turbine Airfoils External Cooling Performance of Various Internal Pin Fin Configurations, J. of Turbomachinery, Vol.133, No.4, p.041006.
  • Hylton, L. D., Mihelc, M. S., Turner, E. R., Nealy, D. A., York, R. E., 1983, Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes, NASA, Contractor Report 168015.
  • Kacker, S., and Whitelaw, J., 1969, An Experimental Investigation of the Influence of Slot-Lip Thickness on the Impervious-Wall Effectiveness of the Uniform-Density, Two-Dimensional Wall Jet, Int. J. of Heat and Mass Transfer, Vol.12, No.9, pp.1196–1201.
  • Li, Q., Chen, Z., Flechtner, U., Warnecke, H.-J., 1998, Heat Transfer and Pressure Drop Characteristics in Rectangular Channels With Elliptic Pin Fins, Int. J. of Heat and Fluid Flow, Vol.19(3), pp.245–250.
  • Ligrani, P., M., and Mahmood, G., I., 2003, Variable Property Nusselt Numbers in a Channel with Pins, J. of Thermophysics and Heat Transfer, Vol.17, No.1, pp.103-111.
  • Ling, J., Yapa, S. D., Benson, M. J., Elkins, C. J., Eaton, J. K., 2013, Three-Dimensional Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot, J. of Turbomachinery, Vol.135(3), pp.031018.
  • Ling, J., Elkins, C., and Eaton, J., 2014, Improvements in Turbulent Scalar Mixing Modeling for Trailing Edge Slot Film Cooling Geometries: A Combined Experimental and Computational Approach, Stanford University, Report No. TF-138, CA.
  • Ling, J., Elkins, C. J., Eaton, J. K., 2015, Optimal Turbulent Schmidt Number For RANS Modeling of Trailing Edge Slot Film Cooling, J. of Engineering for Gas Turbines and Power, Vol.137(7), pp.072605.
  • Martini, P., Schulz, A., Bauer, H. J., Whitney, C. F., 2006, Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cutback of Gas Turbine Airfoils, J. of Turbomachinery, Vol.128(2), pp.292-299.
  • Menter, F.R., Kuntz, M., Langtry, R., 2003, Ten Years of Industrial Experience With the SST Turbulence Model, In Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, Turkey, pp.625–632.
  • Metzger, D., Fan, C., Haley, S., 1984, Effects of Pin Shape and Array Orientation on Heat Transfer and Pressure Loss in Pin Fin Arrays, J. of Engineering for Gas Turbines and Power, Vol.106, pp.252–257.
  • Metzger, D., Shepard, W., Haley, S., 1986, Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence, Proceedings of the ASME Int. Gas Turbine Conference and Exhibit, Dusseldorf, Vol.4: Heat Transfer; Electric Power, 86-GT-132.
  • Sivasegaram, S., and Whitelaw, J., 1969, Film cooling slots: the importance of lip thickness and injection angle, J. Mechanical Engineering Science, Vol.11, No.1, pp.22–27.
  • Taslim, M., Spring, S., Mehlman, B., 1992, Experimental Investigation of Film Cooling Effectiveness for Slots of Various Exit Geometries, J. of Thermo- physics and Heat Transfer, Vol.6, No.2, pp.302–307.
  • Uzol, O., and Camci, C., 2005, Heat Transfer, Pressure Loss and Flow Field Measurements Downstream of Staggered Two-Row Circular and Elliptical Pin Fin Arrays, J. of Heat Transfer, 127, No.5, pp.458-471.
  • Wang F., Zhang J., Wang S., 2012, Investigation on Flow and Heat Transfer Characteristics in Rectangular Channel With Drop-Shaped Pin Fins, Propulsion and Power Research, Vol.1(1), pp.64-70.
There are 27 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Tuğba Tunçel This is me

Harika Kahveci This is me

Publication Date October 31, 2019
Published in Issue Year 2019 Volume: 39 Issue: 2

Cite

APA Tunçel, T., & Kahveci, H. (2019). EFFECTS OF PIN FIN SHAPE AND SIZE ON TURBINE BLADE TRAILING EDGE FLOW AND HEAT TRANSFER. Isı Bilimi Ve Tekniği Dergisi, 39(2), 191-207.