Research Article
BibTex RIS Cite

ŞEYL GAZ YANMASININ KİRLETİCİLERİ ÜZERİNDE CO2, H2O VE N2 DİLÜSYONLARININ ETKİLERİ

Year 2020, Volume: 40 Issue: 1, 15 - 25, 30.04.2020

Abstract

Dünyada şeyl gazın keşfedilmiş büyük rezervleri ve enerji taleplerindeki artış, ülkelerin ve araştırmacıların artan bir şekilde şeyl gaz üzerine odaklanmasına sebep olmaktadır. Şeyl gazın üretim miktarı, son zamanlarda şeyl kayalarından gazın çıkartılması tekniklerinin geliştirilmesi ile artmaya başladı. Bu çalışmada, dilüsyon etkileri ile birlikte şeyl gaz ve nemli havanın ön karışımsız yanma karakteristikleri ve emisyonları, farklı ekivalans oranları, basınç ve sıcaklıklar altında sayısal olarak araştırılmıştır. Silindiriksel yakıcının iki boyutlu bir modeli düşünülmüştür. New Albany ve Haynesville için NOx’lerin, 1.025 ve 1.02 ekivalans oranında maksimum değere ulaştığı ve maksimum reaksiyon sıcaklıklarının sırasıyla 2027 ve 2014 K olduğu sonucuna varılmıştır. Artan ekivalans oranı CO kütle kesitlerini yükseltmektedir. Yükselen dilüsyon oranları NOx’i düşürmekte ve CO kütle kesitlerini artırmaktadır. Artan basınç NOx’i yükseltmekte ve CO kesitlerini azaltmaktadır. Yükselen duvar sıcaklığı NOx, CO ve reaksiyon sıcaklıklarını artırmaktadır. Şeyl gaz yanmasının sonunda ortaya çıkan çevresel kirleticilerden NOx ve CO, ekivalans oranı, duvar sıcaklığı ve basıncı düşürerek azaltılabilir. CO2 ve N2 ile karşılaştırıldığında, NOx ve CO kirleticileri üzerindeki zıt etkilerinden dolayı H2O dilüsyonunun kullanımı bir adım öne çıkmaktadır.

References

  • Akça H., Ürel G., Karacan C. D., Tuygun N., and Polat E., 2017, The Effect of Carbon Monoxide Poisoning on Platelet Volume in Children, J Pediatr Emerg Intensive Care Med, 4, 13-16.
  • Alberts W. M., 1994, Indoor Air Pollution: NO, NO2, CO, and CO2, J Allergy Clin Immunol, 94, 289-95.
  • ANSYS Release 12.0. Tutorial 14.Modeling Species Transport and Gaseous Combustion. 1-46, ANSYS, Inc, 2009.
  • Bilgen, S., and Sarıkaya, İ., 2016, New Horizon in Energy: Shale Gas, Journal of Natural Gas Science and Engineering, 35, 637-645.
  • Bullin K., Krouskop P., and Bryan Research and Engineering Inc. Bryan, Tex., 2008, Composition Variety Complicates Processing Plans for US Shale Gas, E-book, Based on: Annual Forum, Gas Processors Association, Houston Chapter, Houston.
  • Chang Y., Huang R,. Ries R. J., and Masanet E., 2015, Life-Cycle Comparison of Greenhouse Gas Emissions and Water Consumption for Coal and Shale Gas Fired Power Generation in China, Energy, 86, 335-343.
  • Cohen B, and Winkler H., 2014, Greenhouse Gas Emissions from Shale Gas and Coal for Electricity Generation in South Africa, S Afr J Sci., 110 (3/4), 1-5.
  • Garreton D. and Simonin O., 1994, Aerodynamics of Steady State Combustion Chambers and Furnaces, In ASCF Ercoftac Cfd Workshop, Org: EDF Chatou, France.
  • Hayashi S., Yamada H., Shimodaira K., and Machida T., 1998, NOx Emissions from Non-Premixed, Direct Fuel Injection Methane Burners at High-Temperature and Elevated Pressure Conditions, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1833-1839.
  • Hraiech, I., Sautet, J. C., Yon, S., and Mhimid, A., 2015, Combustion of Hythane Diluted with CO2, Thermal Science, 19 (1), 1-10.
  • Jerzak W., Kuzniaa M., Zajemska M., 2014, The Effect of Adding CO2 to The Axis of Natural Gas Combustion Fames on CO and NOx Concentrations in The Combustion Chamber, Journal of Power Technologies, 94 (3), 202-210.
  • McTaggart-Cowan G. P., Wu N., Jin B., Rogak S. N., Davy M. H. and Bushe W. K., 2009, Effects of Fuel Composition on High-Pressure Non-Premixed Natural Gas Combustion, Combust. Sci. and Tech., 181, 397-416.
  • Muharam, Y., Mahendra, M., Giffari, F., and Kartohardjono, S., 2015, Effects of Injection Temperature and Pressure on Combustion in An Existing Otto Engine using CNG Fuel, Journal of Environmental Science and Technology, 8 (1), 25-34.
  • Lan, Y., Yang, Z., Wang, P., Yan, Y., Zhang, L., and Ran, J., 2019, A Review of Microscopic Seepage Mechanism for Shale Gas Extracted by Supercritical CO2 Flooding, Fuel, 238, 412-424.
  • Ozturk, S., 2018, A Computational Evaluation for Hazardous Emissions of Non-Premixed Shale Gas Combustion, Journal of Scientific and Engineering Research, 5 (11), 256-264.
  • Sabia, P., Lavadera M. L., Giudicianni P., Sorrentino G., Ragucci, R., and Joannon, M., 2015, CO2 and H2O Effect on Propane Auto-Ignition Delay Times under Mild Combustion Operative Conditions, Combustion and Flame, 162 (3), 533-543.
  • Silva C. V., Franca F. H. R¸ and Vielmo H. A., 2007, Analysis of The Turbulent, Non-Premixed Combustion of Natural Gas in A Cylindrical Chamber with and without Thermal Radiation, Combust. Sci. and Tech., 179, 1605-1630.
  • Vargas A. C., Arrieta A. A., and Arrieta C. E., 2016, Combustion Characteristics of Several Typical Shale Gas Mixtures, Journal of Natural Gas Science and Engineering, 33, 296-304.
  • Wang Q., Chen X., Jha A. N., and Rogers H., 2014, Natural Gas from Shale Formation - The Rvolution, Evidences and Challenges of Shale Gas Revolution in United States, Renewable and Sustainable Energy Reviews, 30, 1-28.
  • Wang, Y., Liao, B., Qiu, L., Wang, D., Xue, Q., 2019, Numerical Simulation of Enhancing Shale Gas Recovery Using Electrical Resistance Heating Method, International Journal of Heat and Mass Transfer, 128, 1218-1228.
  • Zahedi P., and Yousefi K., 2014, Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO Formation of Methane-Air Mixtures, Journal of Mechanical Science and Technology, 28 (1), 377-386.
  • Ziani, L. and Chaker, A., 2016, Ambient Pressure Effect on Non-Premixed Turbulent Combustion of CH4-H2 Mixture, International Journal of Hydrogen Energy, 41, 11842-11847.

THE EFFECTS OF CO2, H2O, AND N2 DILUTIONS ON POLLUTANTS OF SHALE GAS COMBUSTION

Year 2020, Volume: 40 Issue: 1, 15 - 25, 30.04.2020

Abstract

Increase in demands for energy and discovered huge reserves of shale gas in the world cause countries and researchers to focus on it progressively. The amount of shale gas production has begun to rise by developing the techniques of gas extraction from shale rocks recently. In this paper, the non-premixed combustion characteristic and emissions of shale gas and humid air with dilution effects are numerically investigated under different equivalence ratio, pressure and temperature. A two dimension model of cylindrical combustor is considered. It is concluded that NOx for New Albany and Haynesville come to the maximum value at 1.025 and 1.02 of equivalence ratio and the maximum reaction temperatures are 2027 and 2014 K in turn. The rising equivalence ratio raises CO mass fractions. The increasing dilution rates decrease NOx and uplift CO mass fractions. The enhancing pressure rears NOx and diminishes CO fractions. The ascending wall temperature boosts NOx, CO and reaction temperatures. NOx and CO from environmental pollutants emerging at the end of shale gas combustion can be lowered by decreasing equivalence ratio, wall temperature, and pressure. The use of H2O dilution steps forward in compared with CO2 and N2 because of its opposite effects on NOx and CO pollutants.

References

  • Akça H., Ürel G., Karacan C. D., Tuygun N., and Polat E., 2017, The Effect of Carbon Monoxide Poisoning on Platelet Volume in Children, J Pediatr Emerg Intensive Care Med, 4, 13-16.
  • Alberts W. M., 1994, Indoor Air Pollution: NO, NO2, CO, and CO2, J Allergy Clin Immunol, 94, 289-95.
  • ANSYS Release 12.0. Tutorial 14.Modeling Species Transport and Gaseous Combustion. 1-46, ANSYS, Inc, 2009.
  • Bilgen, S., and Sarıkaya, İ., 2016, New Horizon in Energy: Shale Gas, Journal of Natural Gas Science and Engineering, 35, 637-645.
  • Bullin K., Krouskop P., and Bryan Research and Engineering Inc. Bryan, Tex., 2008, Composition Variety Complicates Processing Plans for US Shale Gas, E-book, Based on: Annual Forum, Gas Processors Association, Houston Chapter, Houston.
  • Chang Y., Huang R,. Ries R. J., and Masanet E., 2015, Life-Cycle Comparison of Greenhouse Gas Emissions and Water Consumption for Coal and Shale Gas Fired Power Generation in China, Energy, 86, 335-343.
  • Cohen B, and Winkler H., 2014, Greenhouse Gas Emissions from Shale Gas and Coal for Electricity Generation in South Africa, S Afr J Sci., 110 (3/4), 1-5.
  • Garreton D. and Simonin O., 1994, Aerodynamics of Steady State Combustion Chambers and Furnaces, In ASCF Ercoftac Cfd Workshop, Org: EDF Chatou, France.
  • Hayashi S., Yamada H., Shimodaira K., and Machida T., 1998, NOx Emissions from Non-Premixed, Direct Fuel Injection Methane Burners at High-Temperature and Elevated Pressure Conditions, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, 1833-1839.
  • Hraiech, I., Sautet, J. C., Yon, S., and Mhimid, A., 2015, Combustion of Hythane Diluted with CO2, Thermal Science, 19 (1), 1-10.
  • Jerzak W., Kuzniaa M., Zajemska M., 2014, The Effect of Adding CO2 to The Axis of Natural Gas Combustion Fames on CO and NOx Concentrations in The Combustion Chamber, Journal of Power Technologies, 94 (3), 202-210.
  • McTaggart-Cowan G. P., Wu N., Jin B., Rogak S. N., Davy M. H. and Bushe W. K., 2009, Effects of Fuel Composition on High-Pressure Non-Premixed Natural Gas Combustion, Combust. Sci. and Tech., 181, 397-416.
  • Muharam, Y., Mahendra, M., Giffari, F., and Kartohardjono, S., 2015, Effects of Injection Temperature and Pressure on Combustion in An Existing Otto Engine using CNG Fuel, Journal of Environmental Science and Technology, 8 (1), 25-34.
  • Lan, Y., Yang, Z., Wang, P., Yan, Y., Zhang, L., and Ran, J., 2019, A Review of Microscopic Seepage Mechanism for Shale Gas Extracted by Supercritical CO2 Flooding, Fuel, 238, 412-424.
  • Ozturk, S., 2018, A Computational Evaluation for Hazardous Emissions of Non-Premixed Shale Gas Combustion, Journal of Scientific and Engineering Research, 5 (11), 256-264.
  • Sabia, P., Lavadera M. L., Giudicianni P., Sorrentino G., Ragucci, R., and Joannon, M., 2015, CO2 and H2O Effect on Propane Auto-Ignition Delay Times under Mild Combustion Operative Conditions, Combustion and Flame, 162 (3), 533-543.
  • Silva C. V., Franca F. H. R¸ and Vielmo H. A., 2007, Analysis of The Turbulent, Non-Premixed Combustion of Natural Gas in A Cylindrical Chamber with and without Thermal Radiation, Combust. Sci. and Tech., 179, 1605-1630.
  • Vargas A. C., Arrieta A. A., and Arrieta C. E., 2016, Combustion Characteristics of Several Typical Shale Gas Mixtures, Journal of Natural Gas Science and Engineering, 33, 296-304.
  • Wang Q., Chen X., Jha A. N., and Rogers H., 2014, Natural Gas from Shale Formation - The Rvolution, Evidences and Challenges of Shale Gas Revolution in United States, Renewable and Sustainable Energy Reviews, 30, 1-28.
  • Wang, Y., Liao, B., Qiu, L., Wang, D., Xue, Q., 2019, Numerical Simulation of Enhancing Shale Gas Recovery Using Electrical Resistance Heating Method, International Journal of Heat and Mass Transfer, 128, 1218-1228.
  • Zahedi P., and Yousefi K., 2014, Effects of Pressure and Carbon Dioxide, Hydrogen and Nitrogen Concentration on Laminar Burning Velocities and NO Formation of Methane-Air Mixtures, Journal of Mechanical Science and Technology, 28 (1), 377-386.
  • Ziani, L. and Chaker, A., 2016, Ambient Pressure Effect on Non-Premixed Turbulent Combustion of CH4-H2 Mixture, International Journal of Hydrogen Energy, 41, 11842-11847.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Suat Öztürk This is me

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 40 Issue: 1

Cite

APA Öztürk, S. (2020). THE EFFECTS OF CO2, H2O, AND N2 DILUTIONS ON POLLUTANTS OF SHALE GAS COMBUSTION. Isı Bilimi Ve Tekniği Dergisi, 40(1), 15-25.