Research Article
BibTex RIS Cite

AERODİNAMİK ISINMA KESTİRİM ARACININ DOĞRULANMASI

Year 2020, Volume: 40 Issue: 1, 53 - 63, 30.04.2020

Abstract

Yüksek hızlı hava araçlarının gövde sıcaklıklarını ve aerodinamik ısı akılarını hesaplama yazılımı olan, bir boyutlu aerodinamik ısınma ve ısıl aşınma kestirim yazılımı, AeroheataBS’in doğrulama çalışmaları yürütülmüştür. Şok denklemleri, düz plaka üzeri taşınım ısı transferi yaklaşımları, Eckert’in referans sıcaklık yöntemi ve değiştirilmiş Newton yasası aerodinamik ısınmanın hesaplanmasında kullanılmıştır. Denklemler açık olarak ayrıklaştırılmış ve sayısal olarak çözülmüştür. Işınım ile olan ısı transferi de dikkate alınmıştır. Uçuş hızı, uçuş irtifası ve hücum açısı zamana bağlı olarak tanımlanmıştır. Hesaplamaların doğruluğu literatürde bulunan uçuş verileriyle ve hesaplamalı akışkanlar dinamiği çalışmalarının sonuçlarıyla kıyaslanarak değerlendirilmiştir. Kıyaslamalarda gözlemlenen uyumlu sonuçlar AeroheataBS yazılımında kullanılan yöntemin aerodinamik ısınmanın ve gövde sıcaklıklarının kestiriminde kullanılabileceğini göstermiştir.

References

  • Anderson, J. D. Jr., 2006, Hypersonic And High Temperature Gas Dynamics, AIAA, Reston, VA, USA.
  • Arnas, A. Ö., D. D. Boettner, G. Tamm, S. A. Norberg, J. R. Whipple, M. J. Benson, and B. P. VanPoppel. 2010. On The Analysis Of The Aerodynamic Heating Problem. J. Heat Transfer 132 (12): 124501.
  • Barth T., 2007, Aero-Thermodynamic Analysis To SHEFEX I, Engineering Applications of Computational Fluid Mechanics Vol.1, No. 1.
  • Bertin, J. J., 1994, Hypersonic Aerothermodynamics, AIAA Education Series, AIAA, Reston, VA, USA.
  • Bertin, J. J., and R. M. Cummings, 2003. Fifty Years Of Hypersonics: Where We’ve Been, Where We’re Going. Prog. Aerosp. Sci. 39 (6–7): 511–536.
  • Bianchi, D. , 2007, Modeling Of Ablation Phenomena In Space Applications, Ph.D. dissertation, Dept. of Mechanics and Aeronautics, The Sapienza University of Rome, Italy.
  • Chapra, S. C., and Canale R. P., 2015, Numerical Methods For Engineers, New York: McGraw-Hill Education.
  • Charubhun, W., and Chusilp P., 2017, Aerodynamic Heat Prediction On A 15 Degree Cone-Cylinder-Flare Configuration Using 2D Axisymmetric Viscous Transient CFD, In Proc., 3rd Asian Conf. on Defense Technology, Piscataway, NJ: IEEE.
  • Crabtree, L. F.,Woodley, J. G., and Dommett, R. L.,1970, Estimation of Heat Transfer to Flat Plates, Cones and Blunt Bodies, Ministry of Technology, Aeronautical Research Council, Rept. and Memoranda No. 3637, London.
  • Hamilton H. H., Greene F. A. and Dejarnette F. R., 1993, An Approximate Method For Calculating Heating Rates On Three-Dimensional Vehicles, AIAA paper 93-2881.
  • Hamilton, H. H., Greene, F. A., and DeJarnette, F. R., 1994, Approximate Method for Calculating Heating Rates on Three Dimensional Vehicles, Journal of Spacecraft and Rockets, Vol. 31, No. 3, 345-354.
  • Hankey W. L., 1988, Re-Entry Aerodynamics, AIAA Education Series, AIAA, Reston, VA, USA.
  • Hantzsche, W., and Wendt, H., 1947, The Laminar Boundary Layer on a Cone in a Supersonic Air Stream at Zero Angle of Attack, Jahrbuch 1941 der Deutschen Luftfahrtforschung. Also available as Translation No. RAT-6, Project RAND.
  • Higgins K., 2008, Comparison of Engineering Correlations for Predicting Heat Transfer in Zero-pressure-gradient Compressible Boundary Layers with CFD and Experimental Data, Australia Defense Science and Technology Organization, DSTO–TR–2159.
  • Hussain M., Qureshi M.N., 2013, Prediction Of Transient Skin Temperature Of High Speed Vehicles Through CFD, 6th International Conference on Recent Advances in Space Technologies,Istanbul, Turkey.
  • Jain, A.C., Hayes, J.R., 2004, Hypersonic Pressure, Skin-Friction, and Heat Transfer Distributions on Space Vehicles: Planar Bodies”, AIAA Journal Vol. 42 No. 10, 2060-2068.
  • Jenkins D.R., 2017, X-15: Extending the Frontiers of Flight, NASA.
  • Kinney, D. J., 2004, Aero-Thermodynamics for Conceptual Design, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
  • Lees, L., 1955, Hypersonic Flow, 5th International Aeronautical Conference, Los Angeles, Inst. of Aeronautical Sciences, New York, 241–276.
  • Louderback P.M., 2013, A Software Upgrade Of The NASA Aeroheating Code “MINIVER”, MSC Thesis, Florida Institute of Technology, USA.
  • Liu C.,Cao W., 2017, Study Of Predicting Aerodynamic Heating For Hypersonic Boundary Layer Flow Over A Flat Plate, International Journal of Heat and Mass Transfer 111, 1079-1086.
  • Mazaheri A., Bruce W.E., Mesick N.J. Sutton K., 2014, Methodology For Flight-Relevant Arc-Jet Testing Of Flexible Thermal Protection Systems, Journal of Spacecraft and Rockets, Vol.51 No.3.
  • Meador, W. E., and Smart, M. K., 2005, Reference Enthalpy Method Developed from Solutions of the Boundary Layer Equations, AIAA Journal, Vol. 43, No. 1, 135–139.
  • Murakami K.,Yamamoto Y.,Rouzand O., 2004, CFD Analysis Of Aerodynamic Heating For Hyflex High Enthalpy Flow Tests And Flight Conditions, 24th International Congress of the Aeronautical Sciences, Yokohama, Japan.
  • Quinn R.D., Gong L., 1990, Real Time Aerodynamic Heating And Surface Temperature Calculations For Hypersonic Flight Simulation, NASA Technical Memorandum 4222.
  • Quinn, R. D., and Gong L., 2000, A Method For Calculating Transient Surface Temperatures And Surface Heating Rates For High-Speed Aircraft, NASA/TP-2000-209034, Washington, DC: NASA.
  • Rumsey C.B., Lee D.B., 1958, Measurements of aerodynamic heat transfer on a 15° cone-cylinder-flare configuration in free flight at Mach numbers up to 4.7., NACA RM LJ57J10.
  • Smyth, D. N. and Loo, H. C., 1981, Analysis of Static Pressure Data from 1/12-scale Model of the YF-12A. Volume 3: The MARK IVS Supersonic-Hypersonic Arbitrary Body Program, User's Manual, NASA-CR-151940.
  • Simsek B., Uslu S., 2019, One-Dimensional Aerodynamic Heating and Ablation Prediction, Journal of Aerospace Engineering, Vol.32 Issue 4.
  • William M.B. Jr., Katherine A.C.,1961, Free-flight aerodynamic heating data to Mach number 10.4 for a modified von Karman nosed body, NASA TN D-889.
  • Wing L.D., 1971, Tangent ogive nose aerodynamic heating program: NQLDW019T, NASA-TM-X-65540.
  • Yang G., Duan Y., Liu C., Cai J., 2014, Approximate Prediction for Aerodynamic Heating and Design for Leading-edge Bluntness on Hypersonic

VALIDATION OF AERODYNAMIC HEATING PREDICTION TOOL

Year 2020, Volume: 40 Issue: 1, 53 - 63, 30.04.2020

Abstract

Validation of one-dimensional aerodynamic heating and ablation prediction program, AeroheataBS to calculate transient skin temperatures and heat fluxes for high-speed vehicles has been performed. In the tool shock relations, flat plate convective heating expressions, Eckert’s reference temperature method and modified Newtonian flow theory are utilized to compute local heat transfer coefficients. Corresponding governing equations are discretized explicitly and numerically solved. Time varying flight conditions including velocity, altitude and angle of attack serve as input to the program. In order to examine the accuracy of aerodynamic heating capabilities of AeroheataBS, calculated temperature histories are compared with flight data of the X-15 research vehicle, a modified von-Karman nose shaped body, cone-cylinder-flare configuration and results of conjugate computational fluid dynamics studies. Comparative studies show that computed values are in good agreement with the reference data and prove that methodology established in AeroheataBS is appropriate for estimating aerodynamic heating and structural thermal response.

References

  • Anderson, J. D. Jr., 2006, Hypersonic And High Temperature Gas Dynamics, AIAA, Reston, VA, USA.
  • Arnas, A. Ö., D. D. Boettner, G. Tamm, S. A. Norberg, J. R. Whipple, M. J. Benson, and B. P. VanPoppel. 2010. On The Analysis Of The Aerodynamic Heating Problem. J. Heat Transfer 132 (12): 124501.
  • Barth T., 2007, Aero-Thermodynamic Analysis To SHEFEX I, Engineering Applications of Computational Fluid Mechanics Vol.1, No. 1.
  • Bertin, J. J., 1994, Hypersonic Aerothermodynamics, AIAA Education Series, AIAA, Reston, VA, USA.
  • Bertin, J. J., and R. M. Cummings, 2003. Fifty Years Of Hypersonics: Where We’ve Been, Where We’re Going. Prog. Aerosp. Sci. 39 (6–7): 511–536.
  • Bianchi, D. , 2007, Modeling Of Ablation Phenomena In Space Applications, Ph.D. dissertation, Dept. of Mechanics and Aeronautics, The Sapienza University of Rome, Italy.
  • Chapra, S. C., and Canale R. P., 2015, Numerical Methods For Engineers, New York: McGraw-Hill Education.
  • Charubhun, W., and Chusilp P., 2017, Aerodynamic Heat Prediction On A 15 Degree Cone-Cylinder-Flare Configuration Using 2D Axisymmetric Viscous Transient CFD, In Proc., 3rd Asian Conf. on Defense Technology, Piscataway, NJ: IEEE.
  • Crabtree, L. F.,Woodley, J. G., and Dommett, R. L.,1970, Estimation of Heat Transfer to Flat Plates, Cones and Blunt Bodies, Ministry of Technology, Aeronautical Research Council, Rept. and Memoranda No. 3637, London.
  • Hamilton H. H., Greene F. A. and Dejarnette F. R., 1993, An Approximate Method For Calculating Heating Rates On Three-Dimensional Vehicles, AIAA paper 93-2881.
  • Hamilton, H. H., Greene, F. A., and DeJarnette, F. R., 1994, Approximate Method for Calculating Heating Rates on Three Dimensional Vehicles, Journal of Spacecraft and Rockets, Vol. 31, No. 3, 345-354.
  • Hankey W. L., 1988, Re-Entry Aerodynamics, AIAA Education Series, AIAA, Reston, VA, USA.
  • Hantzsche, W., and Wendt, H., 1947, The Laminar Boundary Layer on a Cone in a Supersonic Air Stream at Zero Angle of Attack, Jahrbuch 1941 der Deutschen Luftfahrtforschung. Also available as Translation No. RAT-6, Project RAND.
  • Higgins K., 2008, Comparison of Engineering Correlations for Predicting Heat Transfer in Zero-pressure-gradient Compressible Boundary Layers with CFD and Experimental Data, Australia Defense Science and Technology Organization, DSTO–TR–2159.
  • Hussain M., Qureshi M.N., 2013, Prediction Of Transient Skin Temperature Of High Speed Vehicles Through CFD, 6th International Conference on Recent Advances in Space Technologies,Istanbul, Turkey.
  • Jain, A.C., Hayes, J.R., 2004, Hypersonic Pressure, Skin-Friction, and Heat Transfer Distributions on Space Vehicles: Planar Bodies”, AIAA Journal Vol. 42 No. 10, 2060-2068.
  • Jenkins D.R., 2017, X-15: Extending the Frontiers of Flight, NASA.
  • Kinney, D. J., 2004, Aero-Thermodynamics for Conceptual Design, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA.
  • Lees, L., 1955, Hypersonic Flow, 5th International Aeronautical Conference, Los Angeles, Inst. of Aeronautical Sciences, New York, 241–276.
  • Louderback P.M., 2013, A Software Upgrade Of The NASA Aeroheating Code “MINIVER”, MSC Thesis, Florida Institute of Technology, USA.
  • Liu C.,Cao W., 2017, Study Of Predicting Aerodynamic Heating For Hypersonic Boundary Layer Flow Over A Flat Plate, International Journal of Heat and Mass Transfer 111, 1079-1086.
  • Mazaheri A., Bruce W.E., Mesick N.J. Sutton K., 2014, Methodology For Flight-Relevant Arc-Jet Testing Of Flexible Thermal Protection Systems, Journal of Spacecraft and Rockets, Vol.51 No.3.
  • Meador, W. E., and Smart, M. K., 2005, Reference Enthalpy Method Developed from Solutions of the Boundary Layer Equations, AIAA Journal, Vol. 43, No. 1, 135–139.
  • Murakami K.,Yamamoto Y.,Rouzand O., 2004, CFD Analysis Of Aerodynamic Heating For Hyflex High Enthalpy Flow Tests And Flight Conditions, 24th International Congress of the Aeronautical Sciences, Yokohama, Japan.
  • Quinn R.D., Gong L., 1990, Real Time Aerodynamic Heating And Surface Temperature Calculations For Hypersonic Flight Simulation, NASA Technical Memorandum 4222.
  • Quinn, R. D., and Gong L., 2000, A Method For Calculating Transient Surface Temperatures And Surface Heating Rates For High-Speed Aircraft, NASA/TP-2000-209034, Washington, DC: NASA.
  • Rumsey C.B., Lee D.B., 1958, Measurements of aerodynamic heat transfer on a 15° cone-cylinder-flare configuration in free flight at Mach numbers up to 4.7., NACA RM LJ57J10.
  • Smyth, D. N. and Loo, H. C., 1981, Analysis of Static Pressure Data from 1/12-scale Model of the YF-12A. Volume 3: The MARK IVS Supersonic-Hypersonic Arbitrary Body Program, User's Manual, NASA-CR-151940.
  • Simsek B., Uslu S., 2019, One-Dimensional Aerodynamic Heating and Ablation Prediction, Journal of Aerospace Engineering, Vol.32 Issue 4.
  • William M.B. Jr., Katherine A.C.,1961, Free-flight aerodynamic heating data to Mach number 10.4 for a modified von Karman nosed body, NASA TN D-889.
  • Wing L.D., 1971, Tangent ogive nose aerodynamic heating program: NQLDW019T, NASA-TM-X-65540.
  • Yang G., Duan Y., Liu C., Cai J., 2014, Approximate Prediction for Aerodynamic Heating and Design for Leading-edge Bluntness on Hypersonic
There are 32 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Buğra Şimşek This is me

Sıtkı Uslu This is me

Mehmet Ak This is me

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 40 Issue: 1

Cite

APA Şimşek, B., Uslu, S., & Ak, M. (2020). VALIDATION OF AERODYNAMIC HEATING PREDICTION TOOL. Isı Bilimi Ve Tekniği Dergisi, 40(1), 53-63.