Research Article
BibTex RIS Cite

GELENEKSEL KANATÇIKLI BLOK VE KISMİ ALÜMİNYUM VE BAKIR METAL KÖPÜK YERLEŞTİRİLMİŞ ISI ALICILARIN ISIL PERFORMANSLARININ KARŞILAŞTIRILMASI

Year 2020, Volume: 40 Issue: 1, 155 - 165, 30.04.2020

Abstract

Bu araştırmada, 4,8,16 gözenek/cm oranında 0,93 gözenekliliğe sahip alüminyum ve 0,90 gözenekliliğe sahip bir bakır metal köpükler kullanılarak özel bir geometriye sahip ısı alıcı tasarlanmış ve test edilmiştir. Deneyler sırasında, metal köpük entegre edilerek üretilmiş ısı alıcıların ısıl dirençleri ve basınç kayıpları, farklı ısı akıları (10.67, 15.75, 21.33 ve 31.50 kW / m2) ve iki ayrı ön hava hızı (4 ve 6 m/s) uygulanarak test edilmiştir. Isı alıcıların ısıl performanslarındaki farklılıklar, özel olarak ürettirilen ısıtıcıların kullanılarak gözlenmiştir. Test sonuçları, köpük ısı alıcılarının basınç düşüşünün kanat bloğundan yaklaşık dört kat daha fazla olduğunu göstermektedir; köpük ısı emicilerinin ortalama konveksiyon ısı transfer katsayıları ısıtıcı yüklerine bağlı değildir ve köpük bölümlerinin taban plakası sıcaklıkları, köpüksüz bölümlerden 1 ila 1.5 derece daha düşüktür. Bu ısı alıcı tasarımı, elektrikli cihazların bileşenlerinin istenen konumlarında geleneksel tip bir kanatçıklı bloktan daha düşük sıcaklıklar sağlamıştır.

References

  • Antohe B. V., Lage J. L., Price D. C., Weber R. M., 1997, Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminium Porous Matrices, Journal of Fluids Engineering, 119, 404-412.
  • ATEŞ A. M., 2011, Experimental Comparison of Fluid and Thermal Characteristics of Microchannel and Metal Foam Heat Sinks, Msc. Thesis, METU.
  • Bhattacharya A., Calmidi V.V., Mahajan R.L., 2002, Thermophysical Properties of High Porosity Metal Foams, International Journal of Heat and Mass Transfer, 45, 1017-1031.
  • Bonnet J.P., Topin F., Tadrist L., 2008, Flow Laws in Metal Foams: Compressibility and Pore Size Effects, Transport in Porous Media, 73, 233-254.
  • Boomsma K.S., 2002, Metal Foams as Novel Compact High Performance Heat Exchangers for the Cooling of Electronics, PhD. Thesis, Swiss Federal Institute of Technology Zurich.
  • Calmidi V. V., Mahajan R. L., 2000, Forced Convection in High Porosity Metal Foams, ASME Journal of Heat Transfer, 122, 557-565.
  • Dukhan N., Ali M., 2012, Strong Wall and Transverse Size Effects on Pressure Drop of Flow through Open-Cell Metal Foam, International Journal of Thermal Sciences, 57, 85–91.
  • Dukhan N., Chen K. C., 2007, Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux, Experimental Thermal and Fluid Science, 32, 624–631.
  • Dukhan N., Quinones-Ramos P. D., Cruz-Ruiz E., Velez-Reyes M., Scott E. P., 2005, One-Dimensional Heat Transfer Analysis in Open-Cell 10-PPI Metal Foam, International Journal of Heat and Mass Transfer, 48, 5112–5120.
  • Hernández Á. R. Á., 2005, Combined Flow and Heat Transfer Characterization of Open Cell Aluminium Foams, MSc. Thesis, University of Puerto Rico.
  • Kim S.Y., Kang B.H., Kim J.H., 2001, Forced Convection from Aluminium Foam Materials in an Asymmetrically Heated Channel, International Journal of Heat and Mass Transfer, 44, 1451–1454.
  • Kim S.Y., Peak J.W., Kang B.H., 2000, Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger, ASME Journal of Heat Transfer, 122, 572-578.
  • Liu J.F., Wu W.T., Chiu W.C., Hsieh W.H., 2006, Measurement and Correlation of Friction Characteristics of Flow through Foam Matrixes, Experimental Thermal and Fluid Science, 30, 329–336.
  • Loh C.K., Chou Bor-Bin, Nelson Dan and Chou D.J., 2000, Study of Thermal Characteristics on Solder and Adhesive Bonded Folded Fin Heat Sink, The Seventh Intersociety Conference, 2, 1-7.
  • Mahjoob S., Vafai K., 2008, A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers, International Journal of Heat and Mass Transfer, 51, 3701–3711.
  • Mancin S., Zilio C., Cavallini A., Rosetto L., 2010, Pressure Drop During Air Flow in Aluminium Foams, International Journal of Heat and Mass Transfer, 53, 3121–3130.
  • Nawaz K., Bock J., Dai Z., Jacobi A.M., 2010, Experimental Studies to Evaluate the Use of Metal Foams in Highly Compact Air-Cooling Heat Exchangers, International Refrigeration and Air Conditioning Conference, 1-11.
  • Paek J. W., Kang B. H., Kim S. Y., Hyun J. M., 2000, Effective Thermal Conductivity and Permeability of Aluminium Foam Materials, International Journal of Thermophysics, 21, 2, 453-464.
  • Pradeep M. Kamath, C. Balaji, S.P. Venkateshan, 2013, Convection Heat Transfer from Aluminium and Copper Foams in a Vertical Channel - an Experimental Study, International Journal of Thermal Sciences, 64 1-10.
  • Simone Mancin, Claudio Zilio, Andrea Diani, Luisa Rossetto, 2012, Experimental Air Heat Transfer and Pressure Drop through Copper Foams, Experimental Thermal and Fluid Science, 36, 224-232.

A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS

Year 2020, Volume: 40 Issue: 1, 155 - 165, 30.04.2020

Abstract

In this research, the metal foams with 4,8,16 pores/cm, an aluminium foam which has 0.93 porosity and a copper foam which has 0.90 porosity that are integrated into a heat sink with a special geometry were designed and tested. During the process of the experiments, the thermal resistances and the pressure losses of the metal foam integrated heat sinks were tested by applying different heat fluxes (10.67, 15.75, 21.33 and 31.50 kW/m2) and two distinct frontal air velocities (4 and 6 m/s) to the specimens. The differences in the thermal performances of the heat sinks were observed by enforcing the custom-made manufactured heaters. The test results demonstrate that the pressure drop of the foam heat sinks is approximately four times more than the fin block; the average convection heat transfer coefficients of foam heat sinks are not dependent to the heater loads and the base plate temperatures of the foam sections were 1 to 1.5 degree lower than the foamless sections. This heat sink design provides lower temperatures on the desired locations of the electrical components than a conventional type fin block.

References

  • Antohe B. V., Lage J. L., Price D. C., Weber R. M., 1997, Experimental Determination of Permeability and Inertia Coefficients of Mechanically Compressed Aluminium Porous Matrices, Journal of Fluids Engineering, 119, 404-412.
  • ATEŞ A. M., 2011, Experimental Comparison of Fluid and Thermal Characteristics of Microchannel and Metal Foam Heat Sinks, Msc. Thesis, METU.
  • Bhattacharya A., Calmidi V.V., Mahajan R.L., 2002, Thermophysical Properties of High Porosity Metal Foams, International Journal of Heat and Mass Transfer, 45, 1017-1031.
  • Bonnet J.P., Topin F., Tadrist L., 2008, Flow Laws in Metal Foams: Compressibility and Pore Size Effects, Transport in Porous Media, 73, 233-254.
  • Boomsma K.S., 2002, Metal Foams as Novel Compact High Performance Heat Exchangers for the Cooling of Electronics, PhD. Thesis, Swiss Federal Institute of Technology Zurich.
  • Calmidi V. V., Mahajan R. L., 2000, Forced Convection in High Porosity Metal Foams, ASME Journal of Heat Transfer, 122, 557-565.
  • Dukhan N., Ali M., 2012, Strong Wall and Transverse Size Effects on Pressure Drop of Flow through Open-Cell Metal Foam, International Journal of Thermal Sciences, 57, 85–91.
  • Dukhan N., Chen K. C., 2007, Heat Transfer Measurements in Metal Foam Subjected to Constant Heat Flux, Experimental Thermal and Fluid Science, 32, 624–631.
  • Dukhan N., Quinones-Ramos P. D., Cruz-Ruiz E., Velez-Reyes M., Scott E. P., 2005, One-Dimensional Heat Transfer Analysis in Open-Cell 10-PPI Metal Foam, International Journal of Heat and Mass Transfer, 48, 5112–5120.
  • Hernández Á. R. Á., 2005, Combined Flow and Heat Transfer Characterization of Open Cell Aluminium Foams, MSc. Thesis, University of Puerto Rico.
  • Kim S.Y., Kang B.H., Kim J.H., 2001, Forced Convection from Aluminium Foam Materials in an Asymmetrically Heated Channel, International Journal of Heat and Mass Transfer, 44, 1451–1454.
  • Kim S.Y., Peak J.W., Kang B.H., 2000, Flow and Heat Transfer Correlations for Porous Fin in a Plate-Fin Heat Exchanger, ASME Journal of Heat Transfer, 122, 572-578.
  • Liu J.F., Wu W.T., Chiu W.C., Hsieh W.H., 2006, Measurement and Correlation of Friction Characteristics of Flow through Foam Matrixes, Experimental Thermal and Fluid Science, 30, 329–336.
  • Loh C.K., Chou Bor-Bin, Nelson Dan and Chou D.J., 2000, Study of Thermal Characteristics on Solder and Adhesive Bonded Folded Fin Heat Sink, The Seventh Intersociety Conference, 2, 1-7.
  • Mahjoob S., Vafai K., 2008, A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers, International Journal of Heat and Mass Transfer, 51, 3701–3711.
  • Mancin S., Zilio C., Cavallini A., Rosetto L., 2010, Pressure Drop During Air Flow in Aluminium Foams, International Journal of Heat and Mass Transfer, 53, 3121–3130.
  • Nawaz K., Bock J., Dai Z., Jacobi A.M., 2010, Experimental Studies to Evaluate the Use of Metal Foams in Highly Compact Air-Cooling Heat Exchangers, International Refrigeration and Air Conditioning Conference, 1-11.
  • Paek J. W., Kang B. H., Kim S. Y., Hyun J. M., 2000, Effective Thermal Conductivity and Permeability of Aluminium Foam Materials, International Journal of Thermophysics, 21, 2, 453-464.
  • Pradeep M. Kamath, C. Balaji, S.P. Venkateshan, 2013, Convection Heat Transfer from Aluminium and Copper Foams in a Vertical Channel - an Experimental Study, International Journal of Thermal Sciences, 64 1-10.
  • Simone Mancin, Claudio Zilio, Andrea Diani, Luisa Rossetto, 2012, Experimental Air Heat Transfer and Pressure Drop through Copper Foams, Experimental Thermal and Fluid Science, 36, 224-232.
There are 20 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Kaancan Ataer This is me

Cemil Yamalı This is me

Kahraman Albayrak This is me

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 40 Issue: 1

Cite

APA Ataer, K., Yamalı, C., & Albayrak, K. (2020). A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS. Isı Bilimi Ve Tekniği Dergisi, 40(1), 155-165.
AMA Ataer K, Yamalı C, Albayrak K. A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi. April 2020;40(1):155-165.
Chicago Ataer, Kaancan, Cemil Yamalı, and Kahraman Albayrak. “A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS”. Isı Bilimi Ve Tekniği Dergisi 40, no. 1 (April 2020): 155-65.
EndNote Ataer K, Yamalı C, Albayrak K (April 1, 2020) A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi 40 1 155–165.
IEEE K. Ataer, C. Yamalı, and K. Albayrak, “A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS”, Isı Bilimi ve Tekniği Dergisi, vol. 40, no. 1, pp. 155–165, 2020.
ISNAD Ataer, Kaancan et al. “A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS”. Isı Bilimi ve Tekniği Dergisi 40/1 (April 2020), 155-165.
JAMA Ataer K, Yamalı C, Albayrak K. A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi. 2020;40:155–165.
MLA Ataer, Kaancan et al. “A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS”. Isı Bilimi Ve Tekniği Dergisi, vol. 40, no. 1, 2020, pp. 155-6.
Vancouver Ataer K, Yamalı C, Albayrak K. A COMPARISON OF THE THERMAL PERFORMANCE OF A CONVENTIONAL FIN BLOCK AND PARTIALLY COPPER AND ALUMINUM FOAM EMBEDDED HEAT SINKS. Isı Bilimi ve Tekniği Dergisi. 2020;40(1):155-6.