Research Article
BibTex RIS Cite

PARÇALI ÜNİFORM BOYLAMASINA FİTİL PROFİLLİ ISI BORULARI İLE ISI TRANSFERİNİN ARTTIRILMASI

Year 2020, Volume: 40 Issue: 1, 177 - 194, 30.04.2020

Abstract

Bir ısı borusu evaporatöründe ısı transferini fitildeki eksenel basınç kaybı ve radyal sıcaklık değişimi ile termo-fiziksel özelliklere bağlı olarak hesaplamak amacıyla bir bağıntı (29) çıkartılmış, basınç kaybı ve sıcaklık farkı kısıtları altında farklı fitil profillerinin aynı miktarda ısı transfer ettiği gösterilmiştir. Varyasyonlar hesabı ile fitil ağırlığının farklı fitil profilleri arasında sabit kalınlıkta olan için minimum olduğu ispatlanmıştır. Örnek çalışmalar 0.5 porozite, 1.5x10-9 m2 geçirgenlik, 8.65 mm dış yarıçap ve yaklaşık 1.96 W/mK ısıl iletkenliğe sahip bir fitili olan bakır-su ısı borusu için gerçekleştirilmiştir. Bir örnek çalışmayla adyabatik bölgede, buhar akış yarıçapının fitil dış yarıçapına oranının belirli bir değerinde, sıvı ve buhar fazları basınç kayıpları toplamının minimum olduğu gösterilmiştir. Daha sonra, bu çalışmada önerilen bölgesel olarak sabit kalınlıkta iki farklı fitil tasarımı için ısı borusu fitil ve buhar kolonunun bir boyutlu bağlaşık akış ve ısıl analizleri gerçekleştirilmiştir. Sabit toplam fitil hacmi kısıtı altında, her iki tasarım için ısı transferi bölgesel fitil kalınlıklarının fonksiyonu olarak çizdirilmiştir. Fitil hacmi kısıtı kaldırıldığında, adyabatik bölge ve kondenser fitil kalınlıkları arttırılıp, evaporatör fitil kalınlığı azaltıldığında ısı transferi %6.3’e kadar artmıştır. Öte yandan, adyabatik bölge fitil kalınlığı arttırılıp, evaporatör ve kondenser fitil kalınlığı azaltıldığında kapiler limitte ısı transferi %26.9’a kadar artmıştır.

References

  • Crane Co., 2009, Flow of Fluids Through Valves, Fittings and Pipe, Technical Paper No. 410.
  • Deng D., Liang D., Tang Y., Peng J., Han X. and Pan M., 2013, Evaluation of capillary performance of sintered porous wicks for loop heat pipe, Exp. Therm. Fluid Sciences, 50, 1-9.
  • El-Genk M. S. and Huang L., 1993, An experimental investigation of the transient response of a water heat pipe, Int. J. Heat Mass Transfer, 36, 3823-3830.
  • Gelfand I. M. and Fomin S. V., 1963, Calculus of variations, Prentice-Hall.
  • Hong, F.J., Cheng P., Wu H.Y. and Sun Z., 2013, Evaporation/boiling heat transfer on capillary feed copper particle sintered porous wick at reduced pressure, Int. J. Heat Mass Transfer, 63, 389–400.
  • Huang Y. and Chen Q., 2017 ,A numerical model for transient simulation of porous wicked heat pipes by lattice Boltzmann method, Int. J. Heat Mass Transfer, 105, 270–278.
  • Idelchik I. E., 1994, Handbook of Hydraulic Resistance, CRC Begell House.
  • Kaya T., Goldak J., 2007, Three-dimensional numerical analysis of heat and mass transfer in heat pipes, Heat Mass Transfer, 43, 775–785.
  • Kiseev V.M., Vlassov V.V. and Muraoka I., 2010, Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches, Int. J. Heat Mass Transfer, 53, 2143-2148.
  • Lemons D.S., 1997, Perfect Form: Variational Principles, Methods and Applications in Elementary Physics, Princeton University Press.
  • Lin K.T. and Wong S.C., 2013, Performance degradation of flattened heat pipes, Appl. Therm. Engineering, 50, 46–54.
  • Mwaba M.G., Huang X. and Gu J., 2006, Influence of wick characteristics on heat pipe performance, Int. J. Energy Research, 30, 489–499.
  • Nishikawara M. and Nagano H., 2017, Optimization of wick shape in a loop heat pipe for high heat transfer, Int. J. Heat Mass Transfer, 104, 1083-1089.
  • Ranjan R., Murthy J.Y. and Garimella S.V., 2009, Analysis of the wicking and thin-film evaporation characteristics of microstructures, J. Heat Transfer, 131, 1–11.
  • Ranjan R., Murthy J.Y., Garimella S.V. and Vadakkan U., 2011, A numerical model for transport in flat heat pipes considering wick microstructure effects, Int. J. Heat Mass Transfer, 54, 153-168.
  • Schmalhofer J. and Faghri A., 1992, A study of circumferentially- heated and block- heated heat pipes-l. Experimental analysis and generalized analytical prediction of capillary limits, Int. J. Heat Mass Transfer, 36, 201-212.
  • Siddiqui A. and Kaya T., 2016, Design and thermal analysis of a segmented single-artery heat pipe, Appl. Therm. Engineering, 96, 652–658.
  • Tournier J.M. and El-Genk M.S., 1994, A heat pipe transient analysis model, Int. J. Heat Mass Transfer, 37, 753–762. Wang Q., Hong J. and Y. Yan, 2014, Biomimetic capillary inspired heat pipe wicks, J. Bionic Engineering, 11, 469–480.
  • Weibel J.A., Garimella S.V. and North M.T., 2010, Characterization of evaporation and boiling from sintered powder wicks fed by capillary action, Int. J. Heat Mass Transfer, 53, 4204–4215.
  • Wong S.C., Cheng H.S. and Tu C.W., 2017, Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability, Int. J. Heat Mass Transfer, 114, 1045-1053.
  • Zhu N. and Vafai K., 1999, Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-Darcian transport - a closed form solution, Int. J. Heat Mass Transfer, 42, 3405–3418.
  • Zohuri B., 2016, Heat pipe design and technology: Modern applications for practical thermal management (2nd Ed.), Springer.
  • Zuo Z.J. and Faghri A., 1998, A network thermodynamic analysis of the heat pipe, Int. J. Heat Mass Transfer, 41, 1473–1484.

ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES

Year 2020, Volume: 40 Issue: 1, 177 - 194, 30.04.2020

Abstract

An equation (29) is derived to calculate heat transfer rate of a heat pipe evaporator in terms of liquid pressure loss along and temperature difference across the wick and thermo-fluid properties, which shows that various wick profiles transfer same amount of heat under the constraints of pressure loss and temperature difference. It is proved by calculus of variations that among these profiles, wick weight is minimized in case of uniform wick thickness. Case studies are applied for a copper-water heat pipe with a wick of 0.5 porosity, 1.5x10-9 m2 permeability, 8.65 mm outer radius and around 1.96 W/mK thermal conductivity. A case study shows that sum of the pressure losses of the liquid and vapor phases of the adiabatic region is minimized at a certain ratio of vapor core radius to wick outer radius. Finally, 1-D coupled flow and thermal analyses of the wick and vapor core of the heat pipe are performed for two types of designs with piecewise uniform wick thickness profiles which are proposed in this study. Under the constraint of constant total wick volume, heat transfer rate is plotted as function of wick thicknesses for each design. Without the wick volume constraint, increasing the adiabatic zone and condenser wick thicknesses while decreasing wick thickness of the evaporator enhances heat transfer rate up to 6.3%. On the other hand, increasing adiabatic zone wick thickness while decreasing that of the evaporator and condenser improves heat transfer rate up to 26.9% at capillary limit.

References

  • Crane Co., 2009, Flow of Fluids Through Valves, Fittings and Pipe, Technical Paper No. 410.
  • Deng D., Liang D., Tang Y., Peng J., Han X. and Pan M., 2013, Evaluation of capillary performance of sintered porous wicks for loop heat pipe, Exp. Therm. Fluid Sciences, 50, 1-9.
  • El-Genk M. S. and Huang L., 1993, An experimental investigation of the transient response of a water heat pipe, Int. J. Heat Mass Transfer, 36, 3823-3830.
  • Gelfand I. M. and Fomin S. V., 1963, Calculus of variations, Prentice-Hall.
  • Hong, F.J., Cheng P., Wu H.Y. and Sun Z., 2013, Evaporation/boiling heat transfer on capillary feed copper particle sintered porous wick at reduced pressure, Int. J. Heat Mass Transfer, 63, 389–400.
  • Huang Y. and Chen Q., 2017 ,A numerical model for transient simulation of porous wicked heat pipes by lattice Boltzmann method, Int. J. Heat Mass Transfer, 105, 270–278.
  • Idelchik I. E., 1994, Handbook of Hydraulic Resistance, CRC Begell House.
  • Kaya T., Goldak J., 2007, Three-dimensional numerical analysis of heat and mass transfer in heat pipes, Heat Mass Transfer, 43, 775–785.
  • Kiseev V.M., Vlassov V.V. and Muraoka I., 2010, Optimization of capillary structures for inverted meniscus evaporators of loop heat pipes and heat switches, Int. J. Heat Mass Transfer, 53, 2143-2148.
  • Lemons D.S., 1997, Perfect Form: Variational Principles, Methods and Applications in Elementary Physics, Princeton University Press.
  • Lin K.T. and Wong S.C., 2013, Performance degradation of flattened heat pipes, Appl. Therm. Engineering, 50, 46–54.
  • Mwaba M.G., Huang X. and Gu J., 2006, Influence of wick characteristics on heat pipe performance, Int. J. Energy Research, 30, 489–499.
  • Nishikawara M. and Nagano H., 2017, Optimization of wick shape in a loop heat pipe for high heat transfer, Int. J. Heat Mass Transfer, 104, 1083-1089.
  • Ranjan R., Murthy J.Y. and Garimella S.V., 2009, Analysis of the wicking and thin-film evaporation characteristics of microstructures, J. Heat Transfer, 131, 1–11.
  • Ranjan R., Murthy J.Y., Garimella S.V. and Vadakkan U., 2011, A numerical model for transport in flat heat pipes considering wick microstructure effects, Int. J. Heat Mass Transfer, 54, 153-168.
  • Schmalhofer J. and Faghri A., 1992, A study of circumferentially- heated and block- heated heat pipes-l. Experimental analysis and generalized analytical prediction of capillary limits, Int. J. Heat Mass Transfer, 36, 201-212.
  • Siddiqui A. and Kaya T., 2016, Design and thermal analysis of a segmented single-artery heat pipe, Appl. Therm. Engineering, 96, 652–658.
  • Tournier J.M. and El-Genk M.S., 1994, A heat pipe transient analysis model, Int. J. Heat Mass Transfer, 37, 753–762. Wang Q., Hong J. and Y. Yan, 2014, Biomimetic capillary inspired heat pipe wicks, J. Bionic Engineering, 11, 469–480.
  • Weibel J.A., Garimella S.V. and North M.T., 2010, Characterization of evaporation and boiling from sintered powder wicks fed by capillary action, Int. J. Heat Mass Transfer, 53, 4204–4215.
  • Wong S.C., Cheng H.S. and Tu C.W., 2017, Visualization experiments on the performance of mesh-wick heat pipes with differing wick wettability, Int. J. Heat Mass Transfer, 114, 1045-1053.
  • Zhu N. and Vafai K., 1999, Analysis of cylindrical heat pipes incorporating the effects of liquid-vapor coupling and non-Darcian transport - a closed form solution, Int. J. Heat Mass Transfer, 42, 3405–3418.
  • Zohuri B., 2016, Heat pipe design and technology: Modern applications for practical thermal management (2nd Ed.), Springer.
  • Zuo Z.J. and Faghri A., 1998, A network thermodynamic analysis of the heat pipe, Int. J. Heat Mass Transfer, 41, 1473–1484.
There are 23 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Mehmet Paksoy This is me

Salih Ünverdi This is me

Publication Date April 30, 2020
Published in Issue Year 2020 Volume: 40 Issue: 1

Cite

APA Paksoy, M., & Ünverdi, S. (2020). ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES. Isı Bilimi Ve Tekniği Dergisi, 40(1), 177-194.
AMA Paksoy M, Ünverdi S. ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES. Isı Bilimi ve Tekniği Dergisi. April 2020;40(1):177-194.
Chicago Paksoy, Mehmet, and Salih Ünverdi. “ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES”. Isı Bilimi Ve Tekniği Dergisi 40, no. 1 (April 2020): 177-94.
EndNote Paksoy M, Ünverdi S (April 1, 2020) ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES. Isı Bilimi ve Tekniği Dergisi 40 1 177–194.
IEEE M. Paksoy and S. Ünverdi, “ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES”, Isı Bilimi ve Tekniği Dergisi, vol. 40, no. 1, pp. 177–194, 2020.
ISNAD Paksoy, Mehmet - Ünverdi, Salih. “ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES”. Isı Bilimi ve Tekniği Dergisi 40/1 (April 2020), 177-194.
JAMA Paksoy M, Ünverdi S. ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES. Isı Bilimi ve Tekniği Dergisi. 2020;40:177–194.
MLA Paksoy, Mehmet and Salih Ünverdi. “ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES”. Isı Bilimi Ve Tekniği Dergisi, vol. 40, no. 1, 2020, pp. 177-94.
Vancouver Paksoy M, Ünverdi S. ENHANCEMENT OF HEAT TRANSFER BY HEAT PIPES WITH PIECEWISE UNIFORM LONGITUDINAL WICK PROFILES. Isı Bilimi ve Tekniği Dergisi. 2020;40(1):177-94.