Research Article
BibTex RIS Cite

YÜKSEK SICAKLIK PROTON DEĞİŞİM MEMBRAN YAKIT HÜCRESİ MİKRO-KOJENERASYON UYGULAMASININ DENEYSEL VE TEORİK İNCELENMESİ

Year 2018, Volume: 38 Issue: 1, 73 - 82, 30.04.2018

Abstract

Bu çalışmada, yüksek verimlilikleri ve çevre dostu teknolojiler olmaları sebebiyle tercih edilen, güvenilir güç üretim tekniklerinden biri olan yüksek sıcaklık proton değişim membran (YSPEM) yakıt hücreleri kullanılarak bir evsel mikro-kojenerasyon (birlikte ısı-güç) sistemi tasarlanmıştır. Tasarlanan sistem, YSPEM yakıt hücresi tarafından üretilen elektrik gücü ve faydalı ısının kombine bir şekilde, kullanılmasını içermektedir. Hücrenin çalışması sırasında, yüksek performans ve kararlı güç üretimi sağlanabilmesi için hücre içerisinde üretilen ısının uzaklaştırılması ve hücre içi sıcaklığın sabit kalması gerekmektedir. Bu sebeple tasarlanan yenilikçi soğutma sisteminin atık ısısı, sıcak su ısıtmasında kullanılacak olan ısıl enerjinin teminini sağlamaktadır. Böylelikle toplam verim basit çevrimlere göre yaklaşık iki katına çıkabilmektedir. Çalışma kapsamında tasarlanan 225 W gücünde YSPEM yığını 160°C çalışma sıcaklığında hidrojen ve hava gazları ile test edilmiştir. Çalışması sırasında sıcaklığın hücre içerisinde homojen olarak dağılımı, hücrenin kısa sürede gerekli çalışma sıcaklığına ulaşabilmesi, yakıt hücresinde oluşan ısının hücreden sürekli olarak uzaklaştırılabilmesi için yakıt hücresi yığını soğutucu akışkan (Isı Transfer Yağı 32-Petrol Ofisi) kullanılarak soğutulmuştur. Hücre izolasyon malzemesi seçimi ve kalınlığı, doğal taşınım ve radyasyon yolu ile ısı kaybı hesabıyla belirlenmiştir. Maksimum verim çalışma koşulları için mikro-kojenerasyon sisteminin su giriş çıkış sıcaklıkları, su ve soğutucu akışkan debileri, uygun boru çapı hesabı ve pompa güç hesabı yapılarak nihai sistem tasarlanmıştır. Çalışmada tasarlanan kojenerasyon sisteminde, YSPEM yığınının soğutulması ile açığa çıkan atık ısı, 15-20C’lik şebeke suyunun ısıtılması için kullanılmıştır. Şebeke suyu sıcaklığı yalıtımlı hücre kullanılması durumunda ortalama 50C’ye kadar ısıtılmıştır. Elde edilen veriler yakıt hücresi mikro-kojenerasyon uygulamasının kullanılabilirliğini göstermektedir.

References

  • Arsalis, A., Nielsen, M.P. and Kær, S.K. 2011, Modeling and off-design performance of a 1 kWe HTPEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP combined-heat-and-power) system for Danish single-family households, Energy, 36, 5010-5020.
  • Arsalis, A., Nielsen, M.P., Kær, S.K. 2012, Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system, International Journal of Hydrogen Energy, 37, 2470-2481.
  • Babir F., 2012. PEM Fuel Cells (Second Edition), Elsevier, USA.
  • Caizhi Zhang , Tao Yu , Jun Yi , Zhitao Liu, Kamal Abdul Rasheedj Raj, Lingchao Xia , Zhengkai Tu and Siew Hwa Chan, 2016, Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system, Energy Conversion and Management, 129, 36–42.
  • Campanari, S, Valenti G, Macchi E, Lozza G, Ravidà N, 2014, Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells, Applied Thermal Engineering, 71/2, 714-720.
  • Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W., 2013, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC), Journal of Power Sources, 231, 264-278.
  • Devrim Y., Devrim, H. and Eroglu, I., 2016, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 41, 23, 10044-10052.
  • Ergun, D., Devrim, Y., Bac, N., Eroglu, I. 2012., Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell, Journal of Applied Polymer Science, 124, 267–277.
  • Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, 2007, Fundamentals of Heat and Mass Transfer (6th Ed.), Wiley, USA.
  • Gandiglio, M., Lanzini, A., Santarelli, M., Leone, P., 2014, Design and optimization of a proton exchange membrane fuel cell CHP system for residential use, Energy and Buildings, 69, 381-393.
  • Kuhn, V., Klemes, J., Bulatov, I., 2008, MicroCHP: overview of selected technologies, products and field test results, Appl Therm Eng, 28, 2039-2048.
  • Lin, L.,Zhang, C., Liu,C., Dong,M., Zhang, l., Deng, P., Sun, H., Huang, H., Liu, H., Zhang, Y., 2014, Y type zeolites/PI membranes for sulfur-free hydrogen source and for fuel cell applications, International Journal of Hydrogen Energy, 39, 4704-4709.
  • Özgirgin E., Devrim Y. and Albostan A. 2015, Modeling and simulation of a hybrid photovoltaic (PV) module-electrolyzer-PEM fuel cell system for micro-cogeneration applications. Int. J. Hydrogen Energy, 40, 15336-15342.
  • Rohsenow W, Hartnett J, Cho Y, 1998, Handbook of Heat Transfer, McGraw-Hill Professional, USA
  • Santangelo, P.E., Tartarini, P., 2007, Fuel cell systems and traditional technologies. Part I: Experimental CHP approach, Appl Therm Engineering, 27, 1278–84.
  • http://www.members.fchea.org/core/import/PDFs/Technical%20Resources/FCHEA-MCWG-LeakTestingDocument.04-070.pdf

EXPERIMENTAL STUDY AND THEORETICAL INVESTIGATION OF HIGH TEMPERATURE PROTON EXCHANGE MEMBRANE FUEL CELL MICRO-COGENERATION APPLICATION

Year 2018, Volume: 38 Issue: 1, 73 - 82, 30.04.2018

Abstract

In this study, a house hold micro-cogeneration system is designed using high temperature proton exchange membrane (HTPEM) fuel cell. HTPEM type fuel cells gain the highest interest lately, due to their advantages in terms of increasing efficiency and power quality, reducing harmful emissions and flexibility of operation with respect to the other fuels. The micro-cogeneration system involves producing both electrical energy and hot water and/or vapor together in an economical way, utilizing single fuel (HTPEM fuel cells) for household applications. During the operation of the fuel cell, for high efficiency and stable power production, the access heat of the stack should be removed constantly and the temperature of the stack should be held stable. Heat recovered from the designed innovative cooling system is used for acquiring energy for heating water. This way, thermal efficiency is almost doubled compared to simple cycle. In the scope of this study, 225 W HTPEM fuel cell stack is designed and tested at 160°C operation temperature with hydrogen gas and air. During operation, for homogenous distribution of temperature among the cells, for a short start up period leading to a fast required steady state temperature and for constantly removing the access heat produced in the cell, the cell stack is cooled by using a cooling fluid (Heat Transfer Oil 32- Petrol Ofisi). Selection of insulation material type and thickness for the cell stack is done using natural convection and radiation loss calculations. For the most efficient operating conditions, micro-cogeneration system water inlet and exit temperatures, water and cooling fluid flow rates, convenient pipe diameter and pump power calculations are done to finalize the design. With the cogeneration system designed during the studies, by recovering the access heat of the insulated HTPEM cell stack, district water with initial temperature of 15-20 C is heated around 50 C. Data gathered during studies indicate that fuel cell micro-cogeneration application is highly viable.

References

  • Arsalis, A., Nielsen, M.P. and Kær, S.K. 2011, Modeling and off-design performance of a 1 kWe HTPEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP combined-heat-and-power) system for Danish single-family households, Energy, 36, 5010-5020.
  • Arsalis, A., Nielsen, M.P., Kær, S.K. 2012, Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system, International Journal of Hydrogen Energy, 37, 2470-2481.
  • Babir F., 2012. PEM Fuel Cells (Second Edition), Elsevier, USA.
  • Caizhi Zhang , Tao Yu , Jun Yi , Zhitao Liu, Kamal Abdul Rasheedj Raj, Lingchao Xia , Zhengkai Tu and Siew Hwa Chan, 2016, Investigation of heating and cooling in a stand-alone high temperature PEM fuel cell system, Energy Conversion and Management, 129, 36–42.
  • Campanari, S, Valenti G, Macchi E, Lozza G, Ravidà N, 2014, Development of a micro-cogeneration laboratory and testing of a natural gas CHP unit based on PEM fuel cells, Applied Thermal Engineering, 71/2, 714-720.
  • Chandan, A., Hattenberger, M., El-kharouf, A., Du, S., Dhir, A., Self, V., Pollet, B.G., Ingram, A., Bujalski, W., 2013, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC), Journal of Power Sources, 231, 264-278.
  • Devrim Y., Devrim, H. and Eroglu, I., 2016, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy, 41, 23, 10044-10052.
  • Ergun, D., Devrim, Y., Bac, N., Eroglu, I. 2012., Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell, Journal of Applied Polymer Science, 124, 267–277.
  • Frank P. Incropera, David P. DeWitt, Theodore L. Bergman, Adrienne S. Lavine, 2007, Fundamentals of Heat and Mass Transfer (6th Ed.), Wiley, USA.
  • Gandiglio, M., Lanzini, A., Santarelli, M., Leone, P., 2014, Design and optimization of a proton exchange membrane fuel cell CHP system for residential use, Energy and Buildings, 69, 381-393.
  • Kuhn, V., Klemes, J., Bulatov, I., 2008, MicroCHP: overview of selected technologies, products and field test results, Appl Therm Eng, 28, 2039-2048.
  • Lin, L.,Zhang, C., Liu,C., Dong,M., Zhang, l., Deng, P., Sun, H., Huang, H., Liu, H., Zhang, Y., 2014, Y type zeolites/PI membranes for sulfur-free hydrogen source and for fuel cell applications, International Journal of Hydrogen Energy, 39, 4704-4709.
  • Özgirgin E., Devrim Y. and Albostan A. 2015, Modeling and simulation of a hybrid photovoltaic (PV) module-electrolyzer-PEM fuel cell system for micro-cogeneration applications. Int. J. Hydrogen Energy, 40, 15336-15342.
  • Rohsenow W, Hartnett J, Cho Y, 1998, Handbook of Heat Transfer, McGraw-Hill Professional, USA
  • Santangelo, P.E., Tartarini, P., 2007, Fuel cell systems and traditional technologies. Part I: Experimental CHP approach, Appl Therm Engineering, 27, 1278–84.
  • http://www.members.fchea.org/core/import/PDFs/Technical%20Resources/FCHEA-MCWG-LeakTestingDocument.04-070.pdf
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Yılser Devrim This is me

Ekin Özgirgin This is me

Publication Date April 30, 2018
Published in Issue Year 2018 Volume: 38 Issue: 1

Cite

APA Devrim, Y., & Özgirgin, E. (2018). YÜKSEK SICAKLIK PROTON DEĞİŞİM MEMBRAN YAKIT HÜCRESİ MİKRO-KOJENERASYON UYGULAMASININ DENEYSEL VE TEORİK İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 38(1), 73-82.