Year 2018, Volume 38 , Issue 1, Pages 95 - 105 2018-04-30

EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015
DBD PLAZMA EYLEYİCİSİ SİNYAL MODÜLASYONUNUN NACA 0015 ETRAFINDAKİ AKIŞ KONTROLÜNE ETKİSİ

Adem GÜLER [1] , Mehmet SEYHAN [2] , Yahya AKANSU [3]


Effects of DBD plasma actuator driven by six different type modulated signals on flow around NACA 0015 airfoil are experimentally investigated for lift augmentation. One actuator attached to the upside of the airfoil at x/c = 0.1 is used. Force measurement and smoke wire flow visualization are performed in a low speed wind tunnel. For Re= 3.6x104, the actuator is driven with six different signal modulations among which frequency modulation, amplitude modulation, excitation frequency and duty cycle at α = 10°. SM4 including amplitude modulation is indicated to have better performance than the other signal modulations. Signal modulations provide energy savings while generating plasma to increase the lift coefficient. The obtained results indicate that as the dimensionless excitation frequency (F+) is 1 at low duty cycle, a better lift coefficient is obtained in comparison with the other F+ values. For Re= 3x104, the lift coefficient is proportionally increased with driving voltage and frequency due to increasing induced flow at α = 10°. Flow visualization results showed that the separated shear layer at the leading edge gets closer to the (suction) surface of the airfoil by increasing the driving voltage from 6 kVpp to 8 kVpp which confirms the driving voltage effect.
NACA 0015 uçak kanadı etrafındaki akış üzerine altı farklı tipte sinyalle sürülen DBD plazma eyleyicisinin etkileri kaldırma kuvvetinin arttırılması için deneysel olarak incelenmiştir. Uçak kanadının x/c = 0.1 konumuna yerleştirilen tek eyleyici kullanılmıştır. Kuvvet ölçümü ve duman tek akış görüntülemesi düşük hızlı bir rüzgar tünelinde gerçekleştirilmiştir. Frekans modülasyonu, genlik modülasyonu, uyarım frekansı ve doluluk boşluk oranını içeren altı farklı sinyalle Re = 3.6x104 için α = 10°’da eyleyici sürülmüştür. Genlik modülasyonunu içeren SM4 diger sinyal modülasyonlarından daha iyi performans göstermiştir. Sinyal modülasyonu, kaldırma kuvvetini arttırmak için plazma üretirken enerji tasarrufu sağlayabilir. Elde edilen sonuçlar, boyutsuz uyarım frekansı (F+) düşük doluluk boşluk oranı F+ = 1’deyken, en iyi kaldırma katsayısının diğer F+ değerleriyle karşılaştırıldığında elde edildiğini göstermiştir. Re = 3x104 için kaldırma katsayısı, sürüm voltajı ve frekansıyla orantılı bir şekilde α = 10° derecede eyleyici hızının artmasından dolayı artmıştır. Akış görüntüleme sonuçları, hücum kenarında ayrılmış kayma tabakasının sürüm voltajının 6 kVpp’dan 8 kVpp’a artmasıyla uçak kanadının yüzeyi üzerine yaklaşması sürüm voltajının etkisini doğrulamaktadır.
  • Akansu, Y. E., Bayindirli, C. and Seyhan, M., 2016, The Improvement of Drag Force on a Truck Traıler Vehıcle By Passıve Flow Control Methods, Isı Bılımı ve Tekniği Dergisi-Journal Of Thermal Science And Technology, 36(1), 133–141.
  • Akansu, Y. E., Karakaya, F. and Şanlısoy, A., 2013, Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator., EPJ Web of Conferences, 45, 1008.
  • Akansu, Y. E., Sarioglu, M. and Yavuz, T., 2004, Flow around a Rotatable Circular Cylinder-Plate Body at Subcritical Reynolds Numbers, AIAA Journal, 42(6), 1073–1080.
  • Akbıyık, H., Akansu, Y. E. and Yavuz, H., 2017, Active Control of Flow around a Circular Cylinder By Using İntermittent DBD Plasma Actuators, Flow Measurement and Instrumentation, 53, 215–220.
  • Asada, K., Ninomiya, Y., Oyama, A. and Fujii, K., 2009, Airfoil Flow Experiment on the Duty Cycle of DBD Plasma Actuator, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition.
  • Benard, N. and Moreau, E., 2011, On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator. Flow, Turbulence and Combustion, 87(1), 1–31.
  • Benard, N. and Moreau, E., 2013, Response of a Circular Cylinder Wake to a Symmetric Actuation By Non-Thermal Plasma Discharges, Experiments in Fluids, 54(2), 1467.
  • Benard, N. and Moreau, E., 2014, Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Airflow Control, Experiments in Fluids, 55(11), 1846. Coleman, H. W. and Steele, W. G., 2009, Experimentation, Validation, and Uncertainty Analysis for Engineers, John Wiley & Sons.
  • Corke, Thomas C., Enloe and Lon C., 2010, Dielectric Barrier Discharge Plasma Actuators for Flow Control, Annual Review of Fluid Mechanics, 42(1), 505–529.
  • Corke, T. C., Post, M. L. and Orlov, D. M., 2009, Single Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Physics, Modeling and Applications. Experiments in Fluids, 46(1), 1–26.
  • De Giorgi, M. G., Ficarella, A., Marra, F. and Pescini, E., 2017, Micro DBD Plasma Actuators for Flow Separation Control on a Low Pressure Turbine at High Altitude Flight Operating Conditions of Aircraft Engines, Applied Thermal Engineering, 114, 511–522.
  • Esfahani, A., Singhal, A., Clifford, C. J. and Samimy, M., 2016, Flow Separation Control over a Boeing Vertol VR-7 using NS-DBD Plasma Actuators, 54th AIAA Aerospace Sciences Meeting, (January), 1–17.
  • Feng, L. H., Jukes, T. N., Choi, K. S. and Wang, J. J., 2012, Flow Control over a NACA 0012 Airfoil using Dielectric Barrier Discharge Plasma Actuator with a Gurney Flap, Experiments in Fluids, 52(6), 1533–1546.
  • Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G. and Cazalens, M., 2007, Optimization of a Dielectric Barrier Discharge Actuator by Stationary and Non-Stationary Measurements of the Induced Flow velocity: Application to Airflow Control, Experiments in Fluids, 43(6), 917–928.
  • Genç, M. S., Karasu, I. and Hakan Açikel, H., 2012, An Experimental Study on Aerodynamics of NACA2415 Aerofoil at Low Re Numbers, Experimental Thermal and Fluid Science, 39, 252–264.
  • Giepman, R. H. M. and Kotsonis, M., 2011, On the Mechanical Efficiency of Dielectric Barrier Discharge Plasma Actuators, Applied Physics Letters, 98(22), 130–132.
  • Göksel, B., Greenblatt, D., Rechenberg, I., Bannasch, R. and Paschereit, C. O., 2007, Plasma Flow Control at MAV Reynolds Numbers. 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (MAV07) & European Micro Air Vehicle Conference and Flight Competition (EMAV2007), 71–76.
  • Göksel, B., Greenblatt, D., Rechenberg, I., Kastantin, Y., Nayeri, C. N. and Paschereit, C. O., 2007, Pulsed Plasma Actuators for Active Flow Control at MAV Reynolds Numbers, Active Flow Control, 42–55, Springer.
  • Greenblatt, D., Kastantin, Y., Nayeri, C. N. and Paschereit, C. O., 2008, Delta-wing Flow Control Using Dielectric Barrier Discharge Actuators. AIAA journal, 46(6), 1554–1560. Huang, J., Corke, T. C. and Thomas, F. O., 2006, Plasma Actuators for Separation Control of Low-Pressure Turbine Blades, AIAA Journal, 44(1), 51–57.
  • Ibrahimoglu, B., Yilmazoglu, M. Z. and Cücen, A., 2016, Numerical Analysis of Active Control of Flow on a DBD Plasma Actuator Integrated Airfoil, Sustainable Aviation, 363–374, Springer.
  • Jukes, T., Segawa, T., Walker, S., Furutani, H., Iki, N. and Takekawa, S., 2012, Active Separation Control over a NACA0024 by DBD Plasma Actuator and FBG Sensor. Journal of Fluid Science and Technology, 7(1), 39–52.
  • Lissaman, P. B. S. (1983). Low-Reynolds-Number Airfoils. Ann. Rev. Fluid Mech, 15, 223–39.
  • Little, J., Nishihara, M., Adamovich, I. and Samimy, M., 2010, High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator, Experiments in fluids, 48(3), 521–537.
  • Md Daud, N., Kozato, Y., Kikuchi, S. and Imao, S., 2015, Control of leading edge separation on airfoil using DBD plasma actuator with signal amplitude modulation. Journal of Visualization, 19(1), 37–47.
  • Menghu, H., Jun, L., Zhongguo, N., Hua, L., Guangyin, Z. and Weizhuo, H., 2015, Aerodynamic performance enhancement of a flying wing using nanosecond pulsed DBD plasma actuator, Chinese Journal of Aeronautics, 28(2), 377–384.
  • Mohammadi, M. and Taleghani, A. S., 2013, Active Flow Control by Dielectric Barrier Discharge to Increase Stall Angle of a NACA0012 Airfoil, Arabian Journal for Science and Eng., 39(3), 2363–2370.
  • Moreau, E., 2007, Airflow control by non-thermal plasma actuators, Journal of Physics D: Applied Physics, 40, 605–636.
  • Moreau, E., Debien, A., Breux, J. M., & Benard, N. (2016). Control of a turbulent flow separated at mid-chord along an airfoil with DBD plasma actuators. Journal of Electrostatics, 83, 78–87.
  • Nelson, R., Corke, T., He, C., Othman, H., Matsuno, T., Patel, M., and Ng, T., 2007, Modification of the Flow Structure over a UAV Wing for Roll Control, 45th AIAA Aerospace Sciences Meeting and Exhibit, (January), 1–15.
  • Patel, M. P., Ng, T. T., Vasudevan, S., Corke, T. C. and He, C., 2007, Plasma Actuators for Hingeless Aerodynamic Control of an Unmanned Air Vehicle, Journal of Aircraft, 44(4), 1264–1274.
  • Patel, M. P., Ng, T. T., Vasudevan, S., Corke, T. C., Post, M., McLaughlin, T. E. and Suchomel, C. F., 2008, Scaling effects of an aerodynamic plasma actuator. Journal of aircraft, 45(1), 223–236.
  • Pescini, E., Marra, F., De Giorgi, M. G., Francioso, L., and Ficarella, A., 2017, Investigation of the boundary layer characteristics for assessing the DBD plasma actuator control of the separated flow at low Reynolds numbers, Experimental Thermal and Fluid Science, 81, 482–498.
  • Post, M. L. and Corke, T. C., 2004, Separation Control on High Angle of Attack Airfoil Using Plasma Actuators, AIAA Journal, 42(11), 2177–2184.
  • Roth, J. R., 2003, Aerodynamic flow acceleration using paraelectric and peristaltic electrohydrodynamic effects of a one atmosphere uniform glow discharge plasma, Physics of Plasmas (1994-present), 10(5), 2117–2126.
  • Rudmin, D., Benaissa, A. and Poirel, D., 2013, Detection of Laminar Flow Separation and Transition on a NACA-0012 Airfoil Using Surface Hot-Films Journal of Fluids Engineering, 135(10), 101104.
  • Sarioglu, M. (2017). Control of flow around a square cylinder at ıncidence by using a splitter plate. Flow Measurement and Instrumentation, 53, 221–229.
  • Sarioglu, M., Akansu, Y. E. and Yavuz, T., 2005, Control of flow around square cylinders at incidence by using a rod, AIAA Journal, 43(7), 1419–1426.
  • Sarioglu, M., Akansu, Y. E. and Yavuz, T, 2006, Flow Around a Rotatable Square Cylinder-Plate Body, AIAA Journal, 44(5), 1065–1072. Sosa, R. and Artana, G. (2006). Steady control of laminar separation over airfoils with plasma sheet actuators. Journal of Electrostatics, 64(7–9), 604–610.
  • Taleghani, A. S., Shadaram, A. and Mirzaei, M., 2012, Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil, Plasma Science, IEEE Transactions on, 40(5), 1434–1440.
  • Tani, I., 1964, Low-speed flows involving bubble separations, Progress in Aerospace Sciences, 5, 70–103. Thomas, F. O., Kozlov, A. and Corke, T. C., 2008, Plasma Actuators for Cylinder Flow Control and Noise Reduction, AIAA Journal, 46(8), 1921–1931.
  • Wang, J. J., Choi, K. S., Feng, L. H., Jukes, T. N. and Whalley, R. D., 2013, Recent developments in DBD plasma flow control, Progress in Aerospace Sciences, 62, 52–78.
Primary Language en
Subjects Engineering, Mechanical
Journal Section Research Article
Authors

Author: Adem GÜLER
Institution: NIGDE OMER HALISDEMIR UNIVERSITY
Country: Andorra


Author: Mehmet SEYHAN
Institution: Karadeniz Technical University
Country: Turkey


Author: Yahya AKANSU
Institution: NIGDE OMER HALISDEMIR UNIVERSITY
Country: Turkey


Dates

Publication Date : April 30, 2018

Bibtex @research article { isibted782449, journal = {Isı Bilimi ve Tekniği Dergisi}, issn = {1300-3615}, address = {}, publisher = {Türk Isı Bilimi ve Tekniği Derneği}, year = {2018}, volume = {38}, pages = {95 - 105}, doi = {}, title = {EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015}, key = {cite}, author = {Güler, Adem and Seyhan, Mehmet and Akansu, Yahya} }
APA Güler, A , Seyhan, M , Akansu, Y . (2018). EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015 . Isı Bilimi ve Tekniği Dergisi , 38 (1) , 95-105 . Retrieved from https://dergipark.org.tr/en/pub/isibted/issue/56379/782449
MLA Güler, A , Seyhan, M , Akansu, Y . "EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015" . Isı Bilimi ve Tekniği Dergisi 38 (2018 ): 95-105 <https://dergipark.org.tr/en/pub/isibted/issue/56379/782449>
Chicago Güler, A , Seyhan, M , Akansu, Y . "EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015". Isı Bilimi ve Tekniği Dergisi 38 (2018 ): 95-105
RIS TY - JOUR T1 - EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015 AU - Adem Güler , Mehmet Seyhan , Yahya Akansu Y1 - 2018 PY - 2018 N1 - DO - T2 - Isı Bilimi ve Tekniği Dergisi JF - Journal JO - JOR SP - 95 EP - 105 VL - 38 IS - 1 SN - 1300-3615- M3 - UR - Y2 - 2018 ER -
EndNote %0 Isı Bilimi ve Tekniği Dergisi EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015 %A Adem Güler , Mehmet Seyhan , Yahya Akansu %T EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015 %D 2018 %J Isı Bilimi ve Tekniği Dergisi %P 1300-3615- %V 38 %N 1 %R %U
ISNAD Güler, Adem , Seyhan, Mehmet , Akansu, Yahya . "EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015". Isı Bilimi ve Tekniği Dergisi 38 / 1 (April 2018): 95-105 .
AMA Güler A , Seyhan M , Akansu Y . EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015. Isı Bilimi ve Tekniği Dergisi. 2018; 38(1): 95-105.
Vancouver Güler A , Seyhan M , Akansu Y . EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015. Isı Bilimi ve Tekniği Dergisi. 2018; 38(1): 95-105.
IEEE A. Güler , M. Seyhan and Y. Akansu , "EFFECT OF SIGNAL MODULATION OF DBD PLASMA ACTUATOR ON FLOW CONTROL AROUND NACA 0015", Isı Bilimi ve Tekniği Dergisi, vol. 38, no. 1, pp. 95-105, Apr. 2018