Research Article
BibTex RIS Cite

SICAK BİR YAZ GÜNÜNDE FDM DUVARLI KONTEYNERİN ISIL DAVRANIŞININ İNCELENMESİ

Year 2020, Volume: 40 Issue: 2, 221 - 235, 31.10.2020
https://doi.org/10.47480/isibted.816994

Abstract

Bu çalışmada, FDM duvarlı konteynerin ısıl konforu Rio de Janeiro’da sıcak bir yaz günü şartlarında nümerik olarak incelenmiştir. (i) Poliüretan plakalardan (referans olarak incelenen durum), (ii) RT 22 HC, (iii) RT 25 HC ve (iv) RT 28 HC plakalarından olmak üzere dört farklı durum incelenmiştir. Analizler saat 08:00’dan saat 18:00’a kadar olmak üzere 10 saat için yapılmış ve boyutsuz nümerik sonuçlar incelenen her durum için COMSOL Multiphysics sonlu elemanlar modelleme ve simülasyon yazılımıyla elde edilerek sunulmuştur. Poliüretanın ısıl iletkenliği FDM’nin ısıl iletkenliğinin sekizde biri olmasına rağmen, FDM duvarlı konteynerin daha iyi performans gösterdiği görülmüştür. Analiz zamanı sonunda konteyner içindeki boyutsuz ortalama sıcaklık değerinin RT 22 HC ve RT 25 HC’nin kullanıldığı durumlarda başlangıç değerine eşit olduğu görülmüştür. Diğer yandan, RT 28 HC ve poliüretanın kullanıldığı durumlarda bu değerin, söz konusu süre sonunda başlangıç sıcaklığına göre sırasıyla 0.1235 (2.35oC) ve 0.7710 (14.65oC) artış gösterdiği sonucuna ulaşılmıştır.

References

  • Arce E., Agrawal R., Suárez A., Febrero L. and Luhrs C. C., 2020, Modeling of Energy Demand and Savings Associated with the Use of Epoxy-Phase Change Material Formulations, Materials, 13(3), 639, 1-15.
  • Álvarez S., Cabeza L. F., Ruiz-Pardo A., Castell A. and Tenorio J. A., 2013, Building Integration of PCM for Natural Cooling of Buildings, Appl. Energ., 109, 514–522.
  • Beltrán R. D. and Martínez-Gómez J., 2019, Analysis of Phase Change Materials (PCM) for Building Wallboards Based on the Effect of Environment, Journal of Building Engineering, 24, 1-16, 100726.
  • BING, 2019, BING Federation of European Rigid Polyurethane Foam Association, Thermal Insulation Materials Made of Rigid Polyurethane Foam (PUR/PIR)- Properties – Manufacture, Report No:1 (October 2006), Av. E. Van Nieuwenhuyse 6, 1160 Brussels-Belgium. http://highperformanceinsulation.eu/wp-content/uploads/2016/08/Thermal_insulation_materials_made_of_rigid_polyurethane_foam.pdf.
  • Cheng W., Xie B., Zhang R., Xu Z. and Xia Y., 2015, Effect of Thermal Conductivities of Shape Stabilized PCM on Under-Floor Heating System, Appl. Energ., 144, 10–18.
  • Chou H. M., Chen C. R. and Nguyen V. L., 2013, A New Design of Metal-Sheet Cool Roof Using PCM, Energ. Buildings, 57, 42–50.
  • Çengel Y. A., Cimbala J. M., 2005, Fluid Mechanics - Fundamentals and Applications (First Ed.), McGrawHill, New York.
  • Çengel Y. A., 2011, Isı ve Kütle Transferi – Pratik Bir Yaklaşım (Third Ed.), Güven Bilimsel, İzmir.
  • Derradji L., Errebai F. B. and Amara M., 2017, Effect of PCM in Improving the Thermal Comfort in Buildings, Enrgy. Proced., 107, 157 – 161.
  • Elarga H., Fantucci S., Serra V., Zecchin R. and Benini E., 2017, Experimental and Numerical Analyses on Thermal Performance of Different Typologies of PCMs Integrated in the Roof Space, Energ. Buildings, 150, 546–557.
  • Gracia A., Navarro L., Castell A., Ruiz-Pardo A., Álvarez S. and Cabeza L. F., 2013, Thermal Analysis of a Ventilated Facade with PCM for Cooling Applications, Energ. Buildings, 65, 508–515.
  • Ha M. Y., Kim I. K., Yoon H. S., Yoon K. S. and Lee J. R., 2002, Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body, Numer Heat Tr A-Appl, 41:183-210.
  • Hichem N., Noureddine S., Nadia S. and Djamila D., 2013, Experimental and Numerical Study of a Usual Brick Filled with PCM to Improve the Thermal Inertia of Buildings, Enrgy. Proced., 36, 766 – 775.
  • Hu Y., Heiselberg P. K. and Guo R., 2020, Ventilation Cooling/Heating Performance of a PCM Enhanced Ventilated Window - An Experimental Study, Energ. Buildings, 214, 109903, 1-12.
  • Internet, 2019, Previsao do tempo. https://www.climatempo.com.br/previsao-do-tempo/cidade/321/riodejaneiro-rj.
  • Kharbouch Y., Mimet A. and Ganaoui M. E., 2017, A Simulation Based-Optimization Method for Energy Efficiency of a Multi-Zone House Integrated PCM, Enrgy. Proced., 139, 450-455.
  • Kim B. S., Lee D. S., Ha M. Y. and Yoon H. S., 2008, A Numerical Study of Natural Convection in a Square Enclosure with Circular Cylinder at Different Vertical Locations, Int. J. Heat Mass Tran., 51, 1888-1906.
  • Li S., Zhu N., Hu P., Lei F. and Deng R., 2019, Numerical Study on Thermal Performance of PCM Trombe Wall. Enrgy. Proced., 158, 2441-2447.
  • Meng E., Yu H. and Zhou B., 2017, Study of the Thermal Behavior of the Composite Phase Change Material (PCM) Room in Summer and Winter, Appl. Therm. Eng., 126, 212–225.
  • Park B, Cho J. and Jeong Y., 2019, Thermal Performance Assessment of Flexible Modular Housing Units for Energy Independence Following Disasters, Sustainability, 11(20), 5561, 1-17.
  • Rathjen K. A. and Jiji L. M., 1971, Heat Conduction with Melting or Freezing in a Corner, J. Heat Transf., 93(1), 101-109.
  • Rubitherm, 2019a, Rubitherm Phase Change Material, Applications, https://www.rubitherm.eu/en/applications.html.
  • Rubitherm, 2019b, Rubitherm Phase Change Material, PCM RT-Line, https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt.
  • Shobo A. B., Mawire A. and Aucamp M., 2018, Rapid Thermal Cycling of Three Phase Change Materials (PCMs) for Cooking Applications, J. Braz. Soc. Mech. Sci., 40:329, 1-12.
  • Stritih U., Tyagi V. V., Stropnik R., Paksoy H., Haghighat F., and Mastani Joybari M, 2018, Integration of Passive PCM Technologies for Net-Zero Energy Buildings, Sustain. Cities Soc., 41, 286–295.
  • Udosen A. N., 2019, Numerical Study of High Density Polyethylene–PCM Capsules for Passive Cooling Application in Intermodal Steel Building Space Envelope, Nigerian Journal of Technology, 38 (2), 384-398.
  • Ulloa C., Arce M. E., Rey G., Miguez J. L. and Hernandez J., 2017, Recycling COR-TEN Sea Containers into Service Modules for Milirary Applications: Thermal Analysis, Energies, 10(6):820, 1-13.
  • Wang J., Long E., Qin W. and Xu L., 2013, Ultrathin Envelope Thermal Performance Improvement of Prefab House by Integrating with Phase Change Material. Energy. Buildings, 67, 210–216.
  • Xia X., Meng E., Chen Y., Liu Y., Chen Q., Lu Y. and Chen J., 2017, Numerical Study of the Thermal Performance of the PCM Wall Under Periodical Outside Temperature Waves, Procedia Engineer., 205, 3478–3484.
  • Ye R., Lin W., Yuan K., Fang X. and Zhang Z., 2017, Experimental and Numerical Investigation on the Thermal Performance of Building Plane Containing CaCa2.6H2O/Expanded Graphite Composite Phase Change Material. Appl. Energ., 193, 325-335.
  • Zalba B., Marin J. M., Cabeza L.F. and Mehling H., 2003, Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Therm. Eng., 23,251–283.

INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY

Year 2020, Volume: 40 Issue: 2, 221 - 235, 31.10.2020
https://doi.org/10.47480/isibted.816994

Abstract

In this paper, the thermal comfort of a container with PCM walls has been investigated numerically for a hot summer day in Rio de Janeiro. Four different cases have been investigated. These cases are: (i) container made by Polyurethane plates, which is the reference solution, (ii) RT 22 HC plates, (iii) RT 25 HC plates and (iv) RT 28 HC plates. Analyses have been performed for 10 hours from 08:00 to 18:00 h, and dimensionless numerical results for all investigated cases have been presented. Nondimensional governing equations have been solved by COMSOL Multiphysics finite element modeling and simulation software. Results show that although thermal conductivity of polyurethane is one-eighth of that of PCM, the container with PCM walls present considerably better performance. It has been observed that the average value of the dimensionless temperature inside the container is equal to its initial value at the end of the investigation time for the cases of RT 22 HC and RT 25 HC are used. On the other hand, this value shows increments of 0.1235 (2.35oC) and 0.7710 (14.65oC) respect to initial temperature, respectively for the cases of RT 28 HC and polyurethane are used at the end of that time

References

  • Arce E., Agrawal R., Suárez A., Febrero L. and Luhrs C. C., 2020, Modeling of Energy Demand and Savings Associated with the Use of Epoxy-Phase Change Material Formulations, Materials, 13(3), 639, 1-15.
  • Álvarez S., Cabeza L. F., Ruiz-Pardo A., Castell A. and Tenorio J. A., 2013, Building Integration of PCM for Natural Cooling of Buildings, Appl. Energ., 109, 514–522.
  • Beltrán R. D. and Martínez-Gómez J., 2019, Analysis of Phase Change Materials (PCM) for Building Wallboards Based on the Effect of Environment, Journal of Building Engineering, 24, 1-16, 100726.
  • BING, 2019, BING Federation of European Rigid Polyurethane Foam Association, Thermal Insulation Materials Made of Rigid Polyurethane Foam (PUR/PIR)- Properties – Manufacture, Report No:1 (October 2006), Av. E. Van Nieuwenhuyse 6, 1160 Brussels-Belgium. http://highperformanceinsulation.eu/wp-content/uploads/2016/08/Thermal_insulation_materials_made_of_rigid_polyurethane_foam.pdf.
  • Cheng W., Xie B., Zhang R., Xu Z. and Xia Y., 2015, Effect of Thermal Conductivities of Shape Stabilized PCM on Under-Floor Heating System, Appl. Energ., 144, 10–18.
  • Chou H. M., Chen C. R. and Nguyen V. L., 2013, A New Design of Metal-Sheet Cool Roof Using PCM, Energ. Buildings, 57, 42–50.
  • Çengel Y. A., Cimbala J. M., 2005, Fluid Mechanics - Fundamentals and Applications (First Ed.), McGrawHill, New York.
  • Çengel Y. A., 2011, Isı ve Kütle Transferi – Pratik Bir Yaklaşım (Third Ed.), Güven Bilimsel, İzmir.
  • Derradji L., Errebai F. B. and Amara M., 2017, Effect of PCM in Improving the Thermal Comfort in Buildings, Enrgy. Proced., 107, 157 – 161.
  • Elarga H., Fantucci S., Serra V., Zecchin R. and Benini E., 2017, Experimental and Numerical Analyses on Thermal Performance of Different Typologies of PCMs Integrated in the Roof Space, Energ. Buildings, 150, 546–557.
  • Gracia A., Navarro L., Castell A., Ruiz-Pardo A., Álvarez S. and Cabeza L. F., 2013, Thermal Analysis of a Ventilated Facade with PCM for Cooling Applications, Energ. Buildings, 65, 508–515.
  • Ha M. Y., Kim I. K., Yoon H. S., Yoon K. S. and Lee J. R., 2002, Two-Dimensional and Unsteady Natural Convection in a Horizontal Enclosure with a Square Body, Numer Heat Tr A-Appl, 41:183-210.
  • Hichem N., Noureddine S., Nadia S. and Djamila D., 2013, Experimental and Numerical Study of a Usual Brick Filled with PCM to Improve the Thermal Inertia of Buildings, Enrgy. Proced., 36, 766 – 775.
  • Hu Y., Heiselberg P. K. and Guo R., 2020, Ventilation Cooling/Heating Performance of a PCM Enhanced Ventilated Window - An Experimental Study, Energ. Buildings, 214, 109903, 1-12.
  • Internet, 2019, Previsao do tempo. https://www.climatempo.com.br/previsao-do-tempo/cidade/321/riodejaneiro-rj.
  • Kharbouch Y., Mimet A. and Ganaoui M. E., 2017, A Simulation Based-Optimization Method for Energy Efficiency of a Multi-Zone House Integrated PCM, Enrgy. Proced., 139, 450-455.
  • Kim B. S., Lee D. S., Ha M. Y. and Yoon H. S., 2008, A Numerical Study of Natural Convection in a Square Enclosure with Circular Cylinder at Different Vertical Locations, Int. J. Heat Mass Tran., 51, 1888-1906.
  • Li S., Zhu N., Hu P., Lei F. and Deng R., 2019, Numerical Study on Thermal Performance of PCM Trombe Wall. Enrgy. Proced., 158, 2441-2447.
  • Meng E., Yu H. and Zhou B., 2017, Study of the Thermal Behavior of the Composite Phase Change Material (PCM) Room in Summer and Winter, Appl. Therm. Eng., 126, 212–225.
  • Park B, Cho J. and Jeong Y., 2019, Thermal Performance Assessment of Flexible Modular Housing Units for Energy Independence Following Disasters, Sustainability, 11(20), 5561, 1-17.
  • Rathjen K. A. and Jiji L. M., 1971, Heat Conduction with Melting or Freezing in a Corner, J. Heat Transf., 93(1), 101-109.
  • Rubitherm, 2019a, Rubitherm Phase Change Material, Applications, https://www.rubitherm.eu/en/applications.html.
  • Rubitherm, 2019b, Rubitherm Phase Change Material, PCM RT-Line, https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt.
  • Shobo A. B., Mawire A. and Aucamp M., 2018, Rapid Thermal Cycling of Three Phase Change Materials (PCMs) for Cooking Applications, J. Braz. Soc. Mech. Sci., 40:329, 1-12.
  • Stritih U., Tyagi V. V., Stropnik R., Paksoy H., Haghighat F., and Mastani Joybari M, 2018, Integration of Passive PCM Technologies for Net-Zero Energy Buildings, Sustain. Cities Soc., 41, 286–295.
  • Udosen A. N., 2019, Numerical Study of High Density Polyethylene–PCM Capsules for Passive Cooling Application in Intermodal Steel Building Space Envelope, Nigerian Journal of Technology, 38 (2), 384-398.
  • Ulloa C., Arce M. E., Rey G., Miguez J. L. and Hernandez J., 2017, Recycling COR-TEN Sea Containers into Service Modules for Milirary Applications: Thermal Analysis, Energies, 10(6):820, 1-13.
  • Wang J., Long E., Qin W. and Xu L., 2013, Ultrathin Envelope Thermal Performance Improvement of Prefab House by Integrating with Phase Change Material. Energy. Buildings, 67, 210–216.
  • Xia X., Meng E., Chen Y., Liu Y., Chen Q., Lu Y. and Chen J., 2017, Numerical Study of the Thermal Performance of the PCM Wall Under Periodical Outside Temperature Waves, Procedia Engineer., 205, 3478–3484.
  • Ye R., Lin W., Yuan K., Fang X. and Zhang Z., 2017, Experimental and Numerical Investigation on the Thermal Performance of Building Plane Containing CaCa2.6H2O/Expanded Graphite Composite Phase Change Material. Appl. Energ., 193, 325-335.
  • Zalba B., Marin J. M., Cabeza L.F. and Mehling H., 2003, Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications, Appl. Therm. Eng., 23,251–283.
There are 31 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Çiğdem Susantez This is me 0000-0002-2449-2551

Aldelio Caldeıra This is me 0000-0002-7261-9924

Publication Date October 31, 2020
Published in Issue Year 2020 Volume: 40 Issue: 2

Cite

APA Susantez, Ç., & Caldeıra, A. (2020). INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY. Isı Bilimi Ve Tekniği Dergisi, 40(2), 221-235. https://doi.org/10.47480/isibted.816994
AMA Susantez Ç, Caldeıra A. INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY. Isı Bilimi ve Tekniği Dergisi. October 2020;40(2):221-235. doi:10.47480/isibted.816994
Chicago Susantez, Çiğdem, and Aldelio Caldeıra. “INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY”. Isı Bilimi Ve Tekniği Dergisi 40, no. 2 (October 2020): 221-35. https://doi.org/10.47480/isibted.816994.
EndNote Susantez Ç, Caldeıra A (October 1, 2020) INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY. Isı Bilimi ve Tekniği Dergisi 40 2 221–235.
IEEE Ç. Susantez and A. Caldeıra, “INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY”, Isı Bilimi ve Tekniği Dergisi, vol. 40, no. 2, pp. 221–235, 2020, doi: 10.47480/isibted.816994.
ISNAD Susantez, Çiğdem - Caldeıra, Aldelio. “INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY”. Isı Bilimi ve Tekniği Dergisi 40/2 (October 2020), 221-235. https://doi.org/10.47480/isibted.816994.
JAMA Susantez Ç, Caldeıra A. INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY. Isı Bilimi ve Tekniği Dergisi. 2020;40:221–235.
MLA Susantez, Çiğdem and Aldelio Caldeıra. “INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY”. Isı Bilimi Ve Tekniği Dergisi, vol. 40, no. 2, 2020, pp. 221-35, doi:10.47480/isibted.816994.
Vancouver Susantez Ç, Caldeıra A. INVESTIGATION OF THE TIME DEPENDENT THERMAL BEHAVIOR OF A CONTAINER WITH PCM WALLS DURING A HOT SUMMER DAY. Isı Bilimi ve Tekniği Dergisi. 2020;40(2):221-35.