Year 2020, Volume 40 , Issue 2, Pages 319 - 334 2020-10-31

EMERGENCY SIMULATION IN A LONG HIGHWAY TUNNEL
UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU

Nureddin DİNLER [1] , Özkan KAÇAN [2]


In regions that are difficult to overcome geographically in road transport, tunnels both shorten the road to be covered and save fuel. It is the worst scenario that a vehicle can burn in a tunnel. There have been major tunnel fires in the world that have resulted in people's lives. In our country, long highway tunnels such as the Ovit, Kop and Zigana tunnels are being built. In this study, emergency modeling was carried out for vehicle fire (30 MW) in a long road tunnel (14.5 km). The critical point for the emergency was determined and the 1000 m long region was examined on a scale of 1/100. Ansys Fluent was used in the study. Turbulent flow conditions are taken into account. Temperature distribution, carbon monoxide (CO) emission distribution and velocity distributions in the region where the fire is located were examined. Results are given in graphs and interpreted. When the temperature values are examined, the average temperature values in the fire zone were obtained above 400 K in the first 30 m. It was obtained that the CO values did not fall below 400 ppm until the firing shaft, especially in the first 50 m, above 1000 ppm on average.
Karayolu taşımacılığında coğrafi olarak aşılması güç olan bölgelerde tüneller hem kat edilecek yolu kısaltmakta hem de yakıt tasarrufu sağlamaktadır. Bir taşıtın tünel içerisinde yanması oluşabilecek en kötü senaryodur. Dünyada insanların hayatlarını kaybetmesi ile sonuçlanan büyük tünel yangınları olmuştur. Ülkemizde de Ovit, Kop ve Zigana tüneli gibi uzun karayolu tünelleri inşa edilmektedir. Bu çalışmada, uzun bir karayolu tüneli (14500 m) içerisindeki taşıt yangını (30 MW) için acil durum modellemesi yapılmıştır. Acil durum için kritik nokta belirlenerek, 1000 m uzunluğunda bölge 1/100 ölçeğinde incelenmiştir. Çalışmada Ansys Fluent kullanılmıştır. Türbülanslı akış şartları dikkate alınmıştır. Yangının olduğu bölgedeki sıcaklık dağılımı, karbonmonoksit (CO) emisyon dağılımı ve hız dağılımları incelenmiştir. Elde edilen sonuçlar grafikler halinde verilmiş ve yorumlanmıştır. Sıcaklık değerleri incelendiğinde yangın bölgesinde ortalama sıcaklık değerlerinin ilk 30 m’de ortalama 400 K’in üzerinde belirlenmiştir CO emisyon değerlerinin ise atış şaftına kadar 400 ppm seviyelerinin altına düşmediği, özellikle ilk 50 m’de ortalama 1000 ppm’in üzerinde olduğu belirlenmiştir.
  • Alpgiray B., 2016, Enine Havalandırma Sistemine Sahip Bir Tünelde Yangın Kaynaklı Duman Tahliyesinin Sayısal Yöntemle İncelenmesi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Alva W.U., Jomaas G., Anne S. and Dederichs A., 2017, The Influence of Vehicular Obstacles on Longitudinal Ventilation Control in Tunnel Fires, Fire Safety Journal, 87, 25-36.
  • Atkinson G.T. and Wu, Y., 1996, Smoke Control in Sloping Tunnels, Fire Safety Journal, 27, 335-341.
  • Berberoğlu M.İ., 2008, Yeraltı Raylı Taşıma Sistemi İstasyonu İçin Yangın Modellemesi ve Simülasyonu, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Caliendo, C., Ciambelli, P., De Guglielmo, M.L., Meo, M.G. and Russo, P., 2012, Numerical simulation of different HGV fire scenarios in curved bi-directional road tunnels and safety evaluation, Tunnelling and Underground Space Technology, 31, 33-50.
  • Caliendo, C., Ciambelli, P., De Guglielmo, M.L., Meo, M.G. ve Russo, P., 2013, “Simulation of fire scenarious due to different vehicle types with and without trafficin a bi-directional road tunnel”, Tunnelling and Underground Space Technology, 37, 22-36.
  • Chow W.K., Gao Y., Zhao J.H., Dang J.F., Chow C.L. and Miao L., 2015, Smoke movement in tilted tunnel fires with longitudinal ventilation, Fire Safety Journal, 75, 14-22.
  • CETU. (Novembre, 2003). Dossier Pilote Des Tunnels Equipments -Ventilation, Bron: Centre D’etudes Des Tunnels, 45-69.
  • EPC (European Parliament and of the Council), 2004, On Minimum Safety Requirements for Tunnels in the Trans-European Road Network, Official Journal of the European Union, Brussel, 29 April 2004, L201, 56-76.
  • EU Report, 2003, EU (European Union) Directorate General for Energy and Transport, Safety in European Road Tunnels, EU Report 1.4.73, Brussel, 1-7.
  • FIT (European Thematic Network Fire in Tunnels), 2005, Design Fire Scenarious, Technical Report Part 1, A. Haack, STUVA, 60-70.
  • Gong, L., Jiang, L., Li, S., Shen, N., Zhang, Y. and Sun, J. 2016, “Theoretical and experimental study on longitudinal smoke temperature distribution in tunnel fires”, International Journal of Thermal Sciences 102, 319-328.
  • Hu L.H., Huo R., Wang H.B., Li Y.Z. and Yang R.X., 2007, Experimental Studies On Fire-Induced Buoyant Smoke Temperature Distribution Along Tunnel Ceiling, Building and Environment, 42, 11, 3095-3915.
  • Hyun K.G., Ryul K.S., Sun R.H., 2009, An Experimental Study on the Effect of Slope on the Critical Velocity in Tunnel Fires, Journal of Fire Sciences, 28, 27-47.
  • Ingason, H., Li, Y.Z. ve Lönnermark, A., 2015, Springer Science+Business Media New York, “Tunnel Fire Dynamics”, 372-384, 473-504.
  • Karaaslan S., Hepkaya E., Yucel N., 2011, Ölçeklendirilmiş Bir Kısa Tünelde Boyuna Havalandırma Sisteminin CFD Simülasyonu”, Isı Bilimi ve Tekniği Dergisi, 33, 1, 63-77.
  • Kashef A., Saber H.H. and Gao L., 2009, Optimization of Emergency Ventilation Strategies in a Curved Section of a Road Tunnel, National Republican Congressional Committee (NRCC), 51289, 11.
  • KGM (Karayolları Genel Müdürlüğü Araştırma ve Geliştirme Dairesi Başkanlığı), 1997, Karayolu Tüneli Uygulama Projesi Teknik Şartnamesi, KGM Matbaası, Ankara, 1-18.
  • Kurioka H., Oka Y., Satoh H. and Sugawa O. 2003. Fire Properties in Near Filed of Square Fire Source with Longitudinal Ventilation in Tunnels, Fire Safety Journal, 38, 319-340.
  • Lee S.R. and Ryou H.S., 2005, An Experimental Study of the Effect of the Aspect Ratio on the Critical Velocity in Longitudinal Ventilation Tunnel Fires, Journal of Fire Sciences, 23, 119-138.
  • Lee Y.P. and Tsai K.C., 2012, Effect of Vehicular Blockage on Critical Ventilation Velocity and Tunnel Fire Behavior in Longitudinally Ventilated Tunnels, Fire Safety Journal, 53, 35-42.
  • Li Y.Z., Lei B. and Ingason H., 2010, Study of Critical Velocity and Backlayering Length in Longitudinally Ventilated Tunnel Fires, Fire Safety Journal, 45, 361-370.
  • Li, Y.Z., Lei, B., Ingason, H. (2012) Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. Journal of Fire Protection Engineering 22 (2):101–131.
  • Maraveas, C. and Vrakas, A.S., 2014, Design of Concrete Tunnel Linings for Fire Safety, Structural Engineering International, 3, 1-11.
  • McGrattan, K. and Forney, G., 2004, Fire Dynamics Simulator (Version 4), User’s Guide. National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
  • NFPA, 2017, NFPA 502: Standard for Road Tunnels, Bridges, and Other Limited Access Highways, 2017 Edition, NFPA (National Fire Protection Association), Massachusetts, USA.
  • Novozhilov V., 2001, Computational Fluid Dynamics Modeling of Compartment Fires, Progress in Energy and Comustion Science, 27, 611-666.
  • Oka Y. and Atkinson G.T., 1995, Control of Smoke Flow in Tunnel Fires, Fire Safety Journal, 25, 305-322.
  • PIARC (Permanent International Association of Road Congress), 1991, “Fire in Road Tunnels. Protection for Civil Engineering Structures, Electrical Circuits and Equipment, PIARC Committee on Road Tunnels, Paris, 175, 55-68.
  • PIARC (Permanent International Association of Road Congress), 2017, Road Tunnels: (2017R02EN) Design Fire Characteristics for Road Tunnels, PIARC Technical Committee 3.3 on Road Tunnels Operations, Paris, 3-64.
  • Taillefer, N., Carlotti, P., Lemerle, C. and Avenel, R., 2013, Ten Years of Increased Hydrocarbon Temperature Curves in French Tunnels, Fire Technology, 49(2), 531-549.
  • Tang F., Li L., Chen W., Tao C. and Zhan Z., 2017, Studies on Ceiling Maximum Thermal Smoke Temperature and Longitudinal Decay in a Tunnel Fire with Different Transverse Gas Burner Locations, Applied Thermal Engineering, 110, 1674-1681.
  • Toprak, A.S., 2014, CFD Application of a metro tunnel fire safety and emergency ventilation systems, Master’s Thesis, Marmara University Department of Mechanical Engineering, İstanbul.
  • Vauquelin O. and Wu Y., 2006, Influence of Tunnel Width on Longitudinal Smoke Control, Fire Safety Journal, 41, 420-426.
  • Wang X.Y., Spearpoint M.J. and Fleischmann C.M., 2017, Investigation of the Effect of Tunnel Ventilation on Crib Fires Through Small-Scale Experiments, Fire Safety Journal, 88, 45-55.
  • Wu Y. and Bakar M.Z.A., 2000, Control of Smoke Flow in Tunnel Fires Using Longitudinal Ventilation System - A Study of the Critical Velocity”, Fire Safety Journal, 35, 363-390.
Primary Language tr
Subjects Engineering, Mechanical
Journal Section Research Article
Authors

Orcid: 0000-0002-2872-9050
Author: Nureddin DİNLER
Institution: GAZİ ÜNİVERSİTESİ
Country: Turkey


Orcid: 0000-0002-3120-5995
Author: Özkan KAÇAN
Institution: Karayolları Genel Müdürlüğü
Country: Turkey


Dates

Publication Date : October 31, 2020

Bibtex @research article { isibted817057, journal = {Isı Bilimi ve Tekniği Dergisi}, issn = {1300-3615}, address = {}, publisher = {Türk Isı Bilimi ve Tekniği Derneği}, year = {2020}, volume = {40}, pages = {319 - 334}, doi = {10.47480/isibted.817057}, title = {UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU}, key = {cite}, author = {Dinler, Nureddin and Kaçan, Özkan} }
APA Dinler, N , Kaçan, Ö . (2020). UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU . Isı Bilimi ve Tekniği Dergisi , 40 (2) , 319-334 . DOI: 10.47480/isibted.817057
MLA Dinler, N , Kaçan, Ö . "UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU" . Isı Bilimi ve Tekniği Dergisi 40 (2020 ): 319-334 <https://dergipark.org.tr/en/pub/isibted/issue/57550/817057>
Chicago Dinler, N , Kaçan, Ö . "UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU". Isı Bilimi ve Tekniği Dergisi 40 (2020 ): 319-334
RIS TY - JOUR T1 - UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU AU - Nureddin Dinler , Özkan Kaçan Y1 - 2020 PY - 2020 N1 - doi: 10.47480/isibted.817057 DO - 10.47480/isibted.817057 T2 - Isı Bilimi ve Tekniği Dergisi JF - Journal JO - JOR SP - 319 EP - 334 VL - 40 IS - 2 SN - 1300-3615- M3 - doi: 10.47480/isibted.817057 UR - https://doi.org/10.47480/isibted.817057 Y2 - 2020 ER -
EndNote %0 Isı Bilimi ve Tekniği Dergisi UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU %A Nureddin Dinler , Özkan Kaçan %T UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU %D 2020 %J Isı Bilimi ve Tekniği Dergisi %P 1300-3615- %V 40 %N 2 %R doi: 10.47480/isibted.817057 %U 10.47480/isibted.817057
ISNAD Dinler, Nureddin , Kaçan, Özkan . "UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU". Isı Bilimi ve Tekniği Dergisi 40 / 2 (October 2020): 319-334 . https://doi.org/10.47480/isibted.817057
AMA Dinler N , Kaçan Ö . UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU. Isı Bilimi ve Tekniği Dergisi. 2020; 40(2): 319-334.
Vancouver Dinler N , Kaçan Ö . UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU. Isı Bilimi ve Tekniği Dergisi. 2020; 40(2): 319-334.
IEEE N. Dinler and Ö. Kaçan , "UZUN BİR KARAYOLU TÜNELİNDE ACİL DURUM SİMÜLASYONU", Isı Bilimi ve Tekniği Dergisi, vol. 40, no. 2, pp. 319-334, Oct. 2020, doi:10.47480/isibted.817057