Research Article
BibTex RIS Cite

HAVUZ KAYNAMA ISI TRANSFERİNDE MEKANİK ÇALKALAMA ETKİLERİNİN DENEYSEL İNCELENMESİ

Year 2020, Volume: 40 Issue: 2, 349 - 358, 31.10.2020
https://doi.org/10.47480/isibted.817081

Abstract

Bu çalışmada, havuz kaynamada ısı transferini iyileştirme metotlarından biri olan mekanik çalkalamanın ısı transfer katsayısına etkisi deneysel olarak araştırılmıştır. Deneysel çalışma kapsamında bir deney düzeneği kurulmuştur. Deney akışkanı olarak saf su kullanılmıştır. Deneylerde havuz içerisinde mekanik çalkantı oluşturmak amacıyla farklı devir hızlarında çalışan bir adet 100 mm çapında aksiyel fan kanadı kullanılmıştır. Deneylerde 100 mm uzunluğunda 20 mm çapında silindirik çelik ısıtıcı kullanılmıştır. Deneyler havuz kaynamada en yüksek ısı transfer katsayılarının elde edildiği kabarcıklı kaynama bölgesinde (su için ∆T 5-30 ºC) gerçekleştirilmiştir. Deneyler 9 farklı ısıtıcı gücünde (17, 23, 29, 38, 47, 58, 70, 83 ve 94 kW/m2) ve 5 farklı mekanik karıştırıcı devrinde (0, 55, 139, 205 ve 212 d/d) gerçekleştirilmiştir. Isı transferi katsayısının, ısıtıcı gücün ve mekanik karıştırıcının devir sayısının artmasıyla arttığı tespit edilmiştir. Isıtıcı gücün 17 kW/m2 den 94 kW/m2 ye yükseltilmesiyle (mekanik karıştırıcının 55 d/d da sabit tutulmuştur), ısı transferi katsayının yaklaşık %10 oranında arttığı belirlenmiştir. Düşük ısıtıcı gücünde (17 kW/m2’de), devir sayısının 0 d/d’dan 212 d/d’ya çıkartılmasıyla, ısı transferi katsayısının %190 oranında iyileştiği tespit edilmiştir.

References

  • Abadi, S. M. A. N. R., & Meyer, J. P. (2018). Numerical investigation into the inclination effect on conjugate pool boiling and the condensation of steam in a passive heat removal system. International Journal of Heat and Mass Transfer, 122, 1366–1382.
  • Ahmadreza Zahedipoor, M. F., & , Shahab Eslami, A. M. (2017). 10.22104/JPST.2017.2098.1076. 3, 63–69. https://doi.org/10.22104/JPST.2017.2098.1076
  • Akbari, A., Mohammadian, E., Alavi Fazel, S. A., Shanbedi, M., Bahreini, M., Heidari, M., Babakhani Dehkordi, P., & Che Mohamed Hussein, S. N. (2019). Natural Convection from the Outside Surface of an Inclined Cylinder in Pure Liquids at Low Flux. ACS Omega, 4(4), 7038–7046. https://doi.org/10.1021/acsomega.9b00176
  • Alavi Fazel, S. A., Arabi Shamsabadi, A., Sarafraz, M. M., & Peyghambarzadeh, S. M. (2011). Artificial boiling heat transfer in the free convection to carbonic acid solution. Experimental Thermal and Fluid Science, 35(4), 645–652. https://doi.org/10.1016/j.expthermflusci.2010.12.014
  • Alavi Fazel, S. Ali. (2017). A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(9), 2731–2744. https://doi.org/10.1007/s00231-017-2013-8
  • Alıç, E., Kaska, Ö., & Tokgöz, N. (2018). Measuring the formation of the bubble occuring in pool boiling with an image processing technique. 521–529.
  • Atherton, T. J., & Kerbyson, D. J. (1999). Size invariant circle detection. Image and Vision Computing, 17(11), 795–803. https://doi.org/10.1016/s0262-8856(98)00160-7
  • Babu, K., & Prasanna Kumar, T. S. (2011). Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids. International Journal of Heat and Mass Transfer, 54(1–3), 106–117. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.003
  • Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2015). Fundamentals of heat and mass transfer. 2011. In ISBN (Vol. 13, pp. 470–978). John Wiley & Sons.
  • Bovard, S., Asadinia, H., Hosseini, G., & Alavi Fazel, S. A. (2017). Investigation and experimental analysis of the bubble departure diameter in pure liquids on horizontal cylindrical heater. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(4), 1199–1210. https://doi.org/10.1007/s00231-016-1885-3
  • Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
  • Chen, H., Chen, G., Zou, X., Yao, Y., & Gong, M. (2017). Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures. International Journal of Heat and Mass Transfer, 112, 662–675. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.031
  • Çiloglu, D., Bölükbaşi, A., & Çifci, H. (2015). Experimental investigation of pool boiling heat transfer in nanofluids around spherical surfaces. Journal of the Faculty of Engineering and Architecture of Gazi University, 30(3), 405–415.
  • Das, P., Khan, M. M. K., Rasul, M. G., Wu, J., & Youn, I. (2018). Experimental investigation of hydrodynamic and heat transfer effects on scaling in an agitated tank. Chemical Engineering and Processing - Process Intensification, 128(April), 245–256. https://doi.org/10.1016/j.cep.2018.04.019
  • Dikici, B., Eno, E., & Compere, M. (2014). Pool boiling enhancement with environmentally friendly surfactant additives. Journal of Thermal Analysis and Calorimetry, 116(3), 1387–1394. https://doi.org/10.1007/s10973-013-3634-x
  • Durmaz, U., & Ozdemir, M. (2012). An experimental investigation on heat transfer for different parameters in centripetally located boiling agitation vessels. SAÜ Fen Bilimleri Enstitüsü Dergisi, 16(2), 99–105. https://doi.org/10.5505/saufbe.2012.04127
  • Esonye, C. (2019). The Development of Standard Agitator Conditions for Effective Performance of a Batch Crutcher in the Frame of Semi-Boiled Process. International Journal of Chemical Reactor Engineering, 17(9), 1–12. https://doi.org/10.1515/ijcre-2018-0248
  • Gates, L. E., Morton, J., & Pl, F. (1976). Selecting agitator systems to suspend solids in liquids.
  • Gheitaghy, A. M., Samimi, A., & Saffari, H. (2017). Surface structuring with inclined minichannels for pool boiling improvement. Applied Thermal Engineering, 126, 892–902. https://doi.org/10.1016/j.applthermaleng.2017.07.200
  • Guan, C. K., Klausner, J. F., & Mei, R. (2011). A new mechanistic model for pool boiling CHF on horizontal surfaces. International Journal of Heat and Mass Transfer, 54(17–18),3960–3969. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.029
  • Holman, J. P. (2001). Experimental methods for engineers.
  • Hu, Y., Wang, H., Song, M., Huang, J., Babu, K., Prasanna Kumar, T. S., Rahimian, A., Kazeminejad, H., Khalafi, H., Mirvakili, S. M., & Akhavan, A. (2020). An Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids. International Journal of Heat and Mass Transfer, 134(1–3), 106–117. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.003
  • Image Processing Toolbox User’s Guide Revised for Version 11.1 (Release 2020a). (n.d.). The MathWorks, Inc.
  • Jm, S., & An, K. (1993). Impeller Power Demand in Mechanically Agitated Boiling Systems. Chemical Engineering Research & Design, 71(2), 145–152. https://www.cheric.org/research/tech/periodicals/view.php?seq=51438
  • Jung, S., & Kim, H. (2016). Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure. Nuclear Engineering and Design, 305, 347–358. https://doi.org/10.1016/j.nucengdes.2016.06.013
  • Kamel, M. S., & Lezsovits, F. (2020). Enhancement of pool boiling heat transfer performance using dilute cerium oxide/water nanofluid: An experimental investigation. International Communications in Heat and Mass Transfer, 114(April), 104587. https://doi.org/10.1016/j.icheatmasstransfer.2020.104587
  • Kamel, M. S., Lezsovits, F., Hussein, A. M., Mahian, O., & Wongwises, S. (2018). Latest developments in boiling critical heat flux using nanofluids: A concise review. International Communications in Heat and Mass Transfer, 98(September), 59–66. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.009
  • Kim, J. (2003). Heater Size and Gravity Effects on Pool Boiling Heat Transfer. AIP Conference Proceedings, 654(2003), 132–141. https://doi.org/10.1063/1.1541287
  • Kumar, N., Raza, M. Q., & Raj, R. (2018). Surfactant aided bubble departure during pool boiling. International Journal of Thermal Sciences, 131(April), 105–113. https://doi.org/10.1016/j.ijthermalsci.2018.05.025
  • Lee, H. C., Oh, B. Do, Bae, S. W., & Kim, M. H. (2003). Single bubble growth in saturated pool boiling on a constant wall temperature surface. International Journal of Multiphase Flow, 29(12), 1857–1874. https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.003
  • Mehrotra, A. K., Nassar, N. N., & Kasumu, A. S. (2012). A novel laboratory experiment for demonstrating boiling heat transfer. Education for Chemical Engineers, 7(4), e210–e218. https://doi.org/10.1016/j.ece.2012.09.003
  • Minocha, N., Joshi, J. B., Nayak, A. K., & Vijayan, P. K. (2016). 3D CFD simulation of passive decay heat removal system under boiling conditions: Role of bubble sliding motion on inclined heated tubes. Chemical Engineering Science, 145, 245–265. https://doi.org/10.1016/j.ces.2016.02.015
  • Noori Rahim Abadi, S. M. A., Ahmadpour, A., & Meyer, J. P. (2018). Numerical simulation of pool boiling on smooth, vertically aligned tandem tubes. International Journal of Thermal Sciences, 132(March), 628–644. https://doi.org/10.1016/j.ijthermalsci.2018.07.005
  • Nukiyama, S. (1934). Maximum and minimum values of heat q transmitted from metal to water under atmospheric pressure.[J]. Soc. Mech. Eng. Jpn. L934 (37), 354(367), 2.
  • Ozdemir, M., & Durmaz, U. (2015). An approach to obtain the heat transfer coefficient of aqueous sucrose solutions in agitated boiling vessels. Thermal Science, 19(3), 1025–1036. https://doi.org/10.2298/TSCI130111143O
  • Price, D. C. (1966). The effect of surface vibration on nucleate pool boiling at low heat fluxes. In Doctoral Thesis (pp. 68–77).
  • Rajasekaran, E., Kumar, B., Muruganandhan, R., Raman, S. V., & Antony, U. (2018). Determination of forced convection heat transfer coefficients and development of empirical correlations for milk in vessel with mechanical agitators. Journal of Food Science and Technology, 55(7), 2514–2522. https://doi.org/10.1007/s13197-018-3169-z
  • Rashidi, S., Hormozi, F., & Sarafraz, M. M. (2020). Fundamental and subphenomena of boiling heat transfer. Journal of Thermal Analysis and Calorimetry, February. https://doi.org/10.1007/s10973-020-09468-3
  • Rohsenow, W. M. (1951). A method of correlating heat transfer data for surface boiling of liquids. Cambridge, Mass.: MIT Division of Industrial Cooporation,[1951].
  • Saha, S. K., Ranjan, H., Emani, M. S., & Bharti, A. K. (2020). Two-Phase Heat Transfer Enhancement. https://doi.org/10.1007/978-3-030-20755-7
  • Sarafraz, M. M., Peyghambarzadeh, S. M., & Alavifazel, S. A. (2012). Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 48(10), 1755–1765. https://doi.org/10.1007/s00231-012-1019-5
  • Sarafraz, M. M., Pourmehran, O., Yang, B., Arjomandi, M., & Ellahi, R. (2020). Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences, 147(October 2019), 106131. https://doi.org/10.1016/j.ijthermalsci.2019.106131
  • Sathyabhama, A., & Dinesh, A. (2017). Augmentation of heat transfer coefficient in pool boiling using compound enhancement techniques. Applied Thermal Engineering, 119, 176–188. https://doi.org/10.1016/j.applthermaleng.2017.03.029
  • Schuster, G. M., & Katsaggelos, A. K. (2004). Robust circle detection using a weighted MSB estimator. Proceedings - International Conference on Image Processing, ICIP, 3, 2111–2114. https://doi.org/10.1109/ICIP.2004.1421502
  • Smith, J. M., Gao, Z., & Middleton, J. C. (2001). The unsparged power demand of modern gas dispersing impeller in boiling liquids. Chemical Engineering Journal, 84(1), 15–21. https://doi.org/10.1016/S1385-8947(00)00267-9
  • Suriyawong, A., Saisorn, S., & Wongwises, S. (2017). Pool boiling heat transfer enhancement of distilled water with passive rotating blades installed above the heating surface. Experimental Thermal and Fluid Science, 87, 109–116. https://doi.org/10.1016/j.expthermflusci.2017.04.025
  • Takahashi, T., Tagawa, A., Atsumi, N., Dohi, N., & Kawase, Y. (2006). Liquid-phase mixing time in boiling stirred tank reactors with large cross-section impellers. Chemical Engineering and Processing: Process Intensification, 45(4), 303–311. https://doi.org/10.1016/j.cep.2005.06.012
  • Yagov, V. V. (2009). Nucleate boiling heat transfer: Possibilities and limitations of theoretical analysis. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 45(7), 881–892. https://doi.org/10.1007/s00231-007-0253-8

EXPERIMENTAL INVESTIGATION OF HEAT TRANSFER EFFECTS OF MECHANICAL AGITATION IN POOL BOILING

Year 2020, Volume: 40 Issue: 2, 349 - 358, 31.10.2020
https://doi.org/10.47480/isibted.817081

Abstract

In this study, the effect of mechanical agitation, which is one of the methods of improving the heat transfer in pool boiling, on the heat transfer coefficient has been investigated experimentally. Pure water has been used as the test fluid. In the experiments, a 100 mm diameter axial fan blade operating at different rotational speeds have been used to create mechanical agitation in the pool. In the experiments, 100 mm long, 20 mm diameter cylindrical steel heater has been used. Experiments have been carried out in nucleate boiling regime region (for water ∆T 5-30 ºC), where the highest heat transfer coefficients have been obtained in pool boiling. Experiments have been carried out at 9 different heating power (17, 23, 29, 38, 47, 58, 70, 83 and 94 kW/m2) and at 5 different mechanical agitator speeds (0, 55, 139, 205 and 212 rpm). It has been determined that the heat transfer coefficient (HTC) increases with the increase of the heater power and the speed of the mechanical agitator. Increasing the heater power from 17 kW / m2 to 94 kW / m2 (the mechanical agitator has been kept constant at 55 rpm), it has been determined that the heat transfer coefficient increased by approximately 10%. It has been determined that the HTC improved by 190% by increasing the number of revolutions from 0 rpm to 212 rpm at low heater power (at 17 kW/m2).

References

  • Abadi, S. M. A. N. R., & Meyer, J. P. (2018). Numerical investigation into the inclination effect on conjugate pool boiling and the condensation of steam in a passive heat removal system. International Journal of Heat and Mass Transfer, 122, 1366–1382.
  • Ahmadreza Zahedipoor, M. F., & , Shahab Eslami, A. M. (2017). 10.22104/JPST.2017.2098.1076. 3, 63–69. https://doi.org/10.22104/JPST.2017.2098.1076
  • Akbari, A., Mohammadian, E., Alavi Fazel, S. A., Shanbedi, M., Bahreini, M., Heidari, M., Babakhani Dehkordi, P., & Che Mohamed Hussein, S. N. (2019). Natural Convection from the Outside Surface of an Inclined Cylinder in Pure Liquids at Low Flux. ACS Omega, 4(4), 7038–7046. https://doi.org/10.1021/acsomega.9b00176
  • Alavi Fazel, S. A., Arabi Shamsabadi, A., Sarafraz, M. M., & Peyghambarzadeh, S. M. (2011). Artificial boiling heat transfer in the free convection to carbonic acid solution. Experimental Thermal and Fluid Science, 35(4), 645–652. https://doi.org/10.1016/j.expthermflusci.2010.12.014
  • Alavi Fazel, S. Ali. (2017). A genetic algorithm-based optimization model for pool boiling heat transfer on horizontal rod heaters at isolated bubble regime. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(9), 2731–2744. https://doi.org/10.1007/s00231-017-2013-8
  • Alıç, E., Kaska, Ö., & Tokgöz, N. (2018). Measuring the formation of the bubble occuring in pool boiling with an image processing technique. 521–529.
  • Atherton, T. J., & Kerbyson, D. J. (1999). Size invariant circle detection. Image and Vision Computing, 17(11), 795–803. https://doi.org/10.1016/s0262-8856(98)00160-7
  • Babu, K., & Prasanna Kumar, T. S. (2011). Effect of CNT concentration and agitation on surface heat flux during quenching in CNT nanofluids. International Journal of Heat and Mass Transfer, 54(1–3), 106–117. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.003
  • Bergman, T. L., Lavine, A. S., Incropera, F. P., & Dewitt, D. P. (2015). Fundamentals of heat and mass transfer. 2011. In ISBN (Vol. 13, pp. 470–978). John Wiley & Sons.
  • Bovard, S., Asadinia, H., Hosseini, G., & Alavi Fazel, S. A. (2017). Investigation and experimental analysis of the bubble departure diameter in pure liquids on horizontal cylindrical heater. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 53(4), 1199–1210. https://doi.org/10.1007/s00231-016-1885-3
  • Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
  • Chen, H., Chen, G., Zou, X., Yao, Y., & Gong, M. (2017). Experimental investigations on bubble departure diameter and frequency of methane saturated nucleate pool boiling at four different pressures. International Journal of Heat and Mass Transfer, 112, 662–675. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.031
  • Çiloglu, D., Bölükbaşi, A., & Çifci, H. (2015). Experimental investigation of pool boiling heat transfer in nanofluids around spherical surfaces. Journal of the Faculty of Engineering and Architecture of Gazi University, 30(3), 405–415.
  • Das, P., Khan, M. M. K., Rasul, M. G., Wu, J., & Youn, I. (2018). Experimental investigation of hydrodynamic and heat transfer effects on scaling in an agitated tank. Chemical Engineering and Processing - Process Intensification, 128(April), 245–256. https://doi.org/10.1016/j.cep.2018.04.019
  • Dikici, B., Eno, E., & Compere, M. (2014). Pool boiling enhancement with environmentally friendly surfactant additives. Journal of Thermal Analysis and Calorimetry, 116(3), 1387–1394. https://doi.org/10.1007/s10973-013-3634-x
  • Durmaz, U., & Ozdemir, M. (2012). An experimental investigation on heat transfer for different parameters in centripetally located boiling agitation vessels. SAÜ Fen Bilimleri Enstitüsü Dergisi, 16(2), 99–105. https://doi.org/10.5505/saufbe.2012.04127
  • Esonye, C. (2019). The Development of Standard Agitator Conditions for Effective Performance of a Batch Crutcher in the Frame of Semi-Boiled Process. International Journal of Chemical Reactor Engineering, 17(9), 1–12. https://doi.org/10.1515/ijcre-2018-0248
  • Gates, L. E., Morton, J., & Pl, F. (1976). Selecting agitator systems to suspend solids in liquids.
  • Gheitaghy, A. M., Samimi, A., & Saffari, H. (2017). Surface structuring with inclined minichannels for pool boiling improvement. Applied Thermal Engineering, 126, 892–902. https://doi.org/10.1016/j.applthermaleng.2017.07.200
  • Guan, C. K., Klausner, J. F., & Mei, R. (2011). A new mechanistic model for pool boiling CHF on horizontal surfaces. International Journal of Heat and Mass Transfer, 54(17–18),3960–3969. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.029
  • Holman, J. P. (2001). Experimental methods for engineers.
  • Hu, Y., Wang, H., Song, M., Huang, J., Babu, K., Prasanna Kumar, T. S., Rahimian, A., Kazeminejad, H., Khalafi, H., Mirvakili, S. M., & Akhavan, A. (2020). An Experimental Study of the Steel Cylinder Quenching in Water-based Nanofluids. International Journal of Heat and Mass Transfer, 134(1–3), 106–117. https://doi.org/10.1016/j.ijheatmasstransfer.2010.10.003
  • Image Processing Toolbox User’s Guide Revised for Version 11.1 (Release 2020a). (n.d.). The MathWorks, Inc.
  • Jm, S., & An, K. (1993). Impeller Power Demand in Mechanically Agitated Boiling Systems. Chemical Engineering Research & Design, 71(2), 145–152. https://www.cheric.org/research/tech/periodicals/view.php?seq=51438
  • Jung, S., & Kim, H. (2016). Effects of surface orientation on nucleate boiling heat transfer in a pool of water under atmospheric pressure. Nuclear Engineering and Design, 305, 347–358. https://doi.org/10.1016/j.nucengdes.2016.06.013
  • Kamel, M. S., & Lezsovits, F. (2020). Enhancement of pool boiling heat transfer performance using dilute cerium oxide/water nanofluid: An experimental investigation. International Communications in Heat and Mass Transfer, 114(April), 104587. https://doi.org/10.1016/j.icheatmasstransfer.2020.104587
  • Kamel, M. S., Lezsovits, F., Hussein, A. M., Mahian, O., & Wongwises, S. (2018). Latest developments in boiling critical heat flux using nanofluids: A concise review. International Communications in Heat and Mass Transfer, 98(September), 59–66. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.009
  • Kim, J. (2003). Heater Size and Gravity Effects on Pool Boiling Heat Transfer. AIP Conference Proceedings, 654(2003), 132–141. https://doi.org/10.1063/1.1541287
  • Kumar, N., Raza, M. Q., & Raj, R. (2018). Surfactant aided bubble departure during pool boiling. International Journal of Thermal Sciences, 131(April), 105–113. https://doi.org/10.1016/j.ijthermalsci.2018.05.025
  • Lee, H. C., Oh, B. Do, Bae, S. W., & Kim, M. H. (2003). Single bubble growth in saturated pool boiling on a constant wall temperature surface. International Journal of Multiphase Flow, 29(12), 1857–1874. https://doi.org/10.1016/j.ijmultiphaseflow.2003.09.003
  • Mehrotra, A. K., Nassar, N. N., & Kasumu, A. S. (2012). A novel laboratory experiment for demonstrating boiling heat transfer. Education for Chemical Engineers, 7(4), e210–e218. https://doi.org/10.1016/j.ece.2012.09.003
  • Minocha, N., Joshi, J. B., Nayak, A. K., & Vijayan, P. K. (2016). 3D CFD simulation of passive decay heat removal system under boiling conditions: Role of bubble sliding motion on inclined heated tubes. Chemical Engineering Science, 145, 245–265. https://doi.org/10.1016/j.ces.2016.02.015
  • Noori Rahim Abadi, S. M. A., Ahmadpour, A., & Meyer, J. P. (2018). Numerical simulation of pool boiling on smooth, vertically aligned tandem tubes. International Journal of Thermal Sciences, 132(March), 628–644. https://doi.org/10.1016/j.ijthermalsci.2018.07.005
  • Nukiyama, S. (1934). Maximum and minimum values of heat q transmitted from metal to water under atmospheric pressure.[J]. Soc. Mech. Eng. Jpn. L934 (37), 354(367), 2.
  • Ozdemir, M., & Durmaz, U. (2015). An approach to obtain the heat transfer coefficient of aqueous sucrose solutions in agitated boiling vessels. Thermal Science, 19(3), 1025–1036. https://doi.org/10.2298/TSCI130111143O
  • Price, D. C. (1966). The effect of surface vibration on nucleate pool boiling at low heat fluxes. In Doctoral Thesis (pp. 68–77).
  • Rajasekaran, E., Kumar, B., Muruganandhan, R., Raman, S. V., & Antony, U. (2018). Determination of forced convection heat transfer coefficients and development of empirical correlations for milk in vessel with mechanical agitators. Journal of Food Science and Technology, 55(7), 2514–2522. https://doi.org/10.1007/s13197-018-3169-z
  • Rashidi, S., Hormozi, F., & Sarafraz, M. M. (2020). Fundamental and subphenomena of boiling heat transfer. Journal of Thermal Analysis and Calorimetry, February. https://doi.org/10.1007/s10973-020-09468-3
  • Rohsenow, W. M. (1951). A method of correlating heat transfer data for surface boiling of liquids. Cambridge, Mass.: MIT Division of Industrial Cooporation,[1951].
  • Saha, S. K., Ranjan, H., Emani, M. S., & Bharti, A. K. (2020). Two-Phase Heat Transfer Enhancement. https://doi.org/10.1007/978-3-030-20755-7
  • Sarafraz, M. M., Peyghambarzadeh, S. M., & Alavifazel, S. A. (2012). Enhancement of nucleate pool boiling heat transfer to dilute binary mixtures using endothermic chemical reactions around the smoothed horizontal cylinder. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 48(10), 1755–1765. https://doi.org/10.1007/s00231-012-1019-5
  • Sarafraz, M. M., Pourmehran, O., Yang, B., Arjomandi, M., & Ellahi, R. (2020). Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. International Journal of Thermal Sciences, 147(October 2019), 106131. https://doi.org/10.1016/j.ijthermalsci.2019.106131
  • Sathyabhama, A., & Dinesh, A. (2017). Augmentation of heat transfer coefficient in pool boiling using compound enhancement techniques. Applied Thermal Engineering, 119, 176–188. https://doi.org/10.1016/j.applthermaleng.2017.03.029
  • Schuster, G. M., & Katsaggelos, A. K. (2004). Robust circle detection using a weighted MSB estimator. Proceedings - International Conference on Image Processing, ICIP, 3, 2111–2114. https://doi.org/10.1109/ICIP.2004.1421502
  • Smith, J. M., Gao, Z., & Middleton, J. C. (2001). The unsparged power demand of modern gas dispersing impeller in boiling liquids. Chemical Engineering Journal, 84(1), 15–21. https://doi.org/10.1016/S1385-8947(00)00267-9
  • Suriyawong, A., Saisorn, S., & Wongwises, S. (2017). Pool boiling heat transfer enhancement of distilled water with passive rotating blades installed above the heating surface. Experimental Thermal and Fluid Science, 87, 109–116. https://doi.org/10.1016/j.expthermflusci.2017.04.025
  • Takahashi, T., Tagawa, A., Atsumi, N., Dohi, N., & Kawase, Y. (2006). Liquid-phase mixing time in boiling stirred tank reactors with large cross-section impellers. Chemical Engineering and Processing: Process Intensification, 45(4), 303–311. https://doi.org/10.1016/j.cep.2005.06.012
  • Yagov, V. V. (2009). Nucleate boiling heat transfer: Possibilities and limitations of theoretical analysis. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 45(7), 881–892. https://doi.org/10.1007/s00231-007-0253-8
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Article
Authors

Huri Furkan This is me 0000-0002-7567-9682

Fatma Şahin This is me 0000-0002-9872-823X

Erdem Alıç 0000-0002-2852-0353

Ahmet Kaya This is me 0000-0001-9197-3542

Publication Date October 31, 2020
Published in Issue Year 2020 Volume: 40 Issue: 2

Cite

APA Furkan, H., Şahin, F., Alıç, E., Kaya, A. (2020). HAVUZ KAYNAMA ISI TRANSFERİNDE MEKANİK ÇALKALAMA ETKİLERİNİN DENEYSEL İNCELENMESİ. Isı Bilimi Ve Tekniği Dergisi, 40(2), 349-358. https://doi.org/10.47480/isibted.817081