Research Article
BibTex RIS Cite

COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER

Year 2024, Volume: 44 Issue: 1, 71 - 88, 03.06.2024
https://doi.org/10.47480/isibted.1494043

Abstract

Unsteady laminar confined and unconfined fluid flow and mixed (forced and free) convection heat transfer around equilateral triangular cylinders are investigated numerically. The computation model is a two-dimensional domain with blockage ratios of BR=0.5, 0.25, 0.2, 0.1, 0.05, and 0.0333, with the Reynolds numbers ranging from 100 to 200. The working fluid is water (Pr = 7). The effects of aiding and opposing thermal buoyancy are incorporated into the Navier-Stokes equations using the Boussinesq approximation. The Richardson number, which is a relative measure of free convection, is varied in the range -2 ≤ Ri ≤ 2. The governing equations are solved by using the Finite Volume Method with a second-order upwind scheme used for differencing of the convection terms, and the SIMPLE algorithm is used for the velocity-pressure coupling. A discussion of the effect of the blockage ratio on the mean drag, mean rms lift coefficients, the Strouhal number, and the mean Nusselt number is also presented. The iso-vorticity contours and dimensionless temperature field are generated to interpret and understand the underlying physical mechanisms. The results reveal that, in addition to the Richardson and Reynolds numbers, the blockage rate is effective in the vortex distribution in the channel. It has been determined that the vortices formed behind the cylinder spread to the channel with a decreasing blockage rate. Especially at high Reynolds numbers, both the drag coefficient and the mean Nusselt number are significantly affected by the blockage ratio. For Ri=0, the drag coefficients for BR=0.25 in comparison to the BR=0.05 case are about 9% and 29% larger for Re= 100 and 200, respectively. For BR<0.1, two-column vortex formation at the back of the cylinder gave way to single vortexes in the aiding thermal buoyancy condition (Ri=2) compared to Ri=0 and -2. Also, useful correlations for flow characteristics and heat transfer are derived using the computed data.

References

  • Abbassi, H., Turki, S., and Nasrallah, S. B., 2001, Mixed convection in a plane channel with a built-in triangular prism, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 39: 307–320.
  • Akbari, M., Lavasani, A. M. and Naseri, A., 2021, Experimental investigation of the heat transfer for non-circular tubes in a turbulent air cross flow, Experimental Heat Transfer 34 (6): 531-530.
  • Altaç Z. and Altun, Ö., 2014, Hydrodynamically and thermally developing laminar flow in spiral coil tubes, International Journal of Thermal Sciences 77: 96-107.
  • Altaç, Z., Sert Z., Mahir, N., and Timuralp, Ç., 2019, Mixed convection heat transfer from a triangular cylinder subjected to upward cross flow, International Journal of Thermal Sciences 137: 75-85.
  • Ali, M., Zeitoun, O., and Nuhait, A., 2011, Forced convection heat transfer over horizontal triangular cylinder in cross flow, International Journal of Thermal Sciences 50: 106–114.
  • Arif, M. R. and Hasan, N., 2020, Large-scale heating effects on global parameters for flow past a square cylinder at different cylinder inclinations, International Journal of Heat and Mass Transfer 161: 120237.
  • Barati, E., Biabani, M. and Zarkak, M. R., 2022, Numerical investigation on vortex-induced vibration energy harvesting of a heated circular cylinder with various cross-sections. International Communications in Heat and Mass Transfer 132: 105888.
  • Bergman, T. L., Lavine, A. S. and Incropera, F. P., and DeWitt, D. P., 2018, Fundamentals of Heat and Mass Transfer, Wiley (WileyPLUS Products); 8th edition, Table 7.7, page 447.)
  • Bovand, M., Rashidi, S., Esfahani, J.A., 2015, Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle, Energy Conversion and Management 97: 212-223. Camarri, S., Salvetti, M. V., and Buresti, G., 2006, Large-eddy simulation of the flow around a triangular prism with moderate aspect ratio, Journal of Wind Engineering and Industrial Aerodynamics 94: 309-322.
  • Chatterjee, D., and Mondal, B., 2015, Mixed convection heat transfer from an equilateral triangular cylinder in cross flow at low Reynolds numbers, Heat Transfer Engineering 36 (1): 123–133.
  • Chattopadhyay, H., 2007, Augmentation of heat transfer in a channel using a triangular prism, International Journal of Thermal Sciences 46: 501-505.
  • Chen T. S., Armaly, B. F., Ramachandran, N., Correlations for laminar mixed convection flows on vertical, inclined, and horizontal flat plates, Journal of Heat Transfer, 108, 835-840.
  • Çelik, Z., Altaç, Z., 2023, Numerical investigation of two-dimensional unsteady flow and heat transfer from rounded equilateral isothermal triangular cylinders in cross flow, Ocean Engineering 269: 113468.
  • Dalal, A., Eswaran, V., and Biswas, G., 2008, A finite-volume method for Navier-Stokes equations on unstructured meshes, Numerical Heat Transfer, Part B: Fundamentals 54 (3): 238–259.
  • Dalkilic, A. S., Çebi, A., Celen, A., 2019, Numerical analyses on the prediction of Nusselt numbers for upward and downward flows of water in a smooth pipe: effects of buoyancy and property variations, Journal of Thermal Engineering, 5 (3): 166-180.
  • De, A. K., and Dalal, A., 2006, Numerical simulation of unconfined flow past a triangular cylinder, International Journal for Numerical Methods in Fluids 52 (7): 801–821.
  • De, A. K., and Dalal, A., 2007, Numerical study of laminar forced convection fluid flow and heat transfer from a triangular cylinder placed in a channel, ASME Journal of Heat Transfer 129: 646–656.
  • Dhimana, A., and Shyam, R., 2011, Unsteady heat transfer from an equilateral triangular cylinder in the unconfined flow regime, ISRN Mechanical Engineering 932738: 1–13.
  • Dhiman, A. K., 2016, Flow and heat transfer phenomena around an equilateral triangular bluff body: effect of wall confinement, Heat Transfer - Asian Research 45: 608–630.
  • Dulhani, J. P., and Dalal, A., 2015, Flow past an equilateral triangular bluff obstacle: computational study of the effect of thermal buoyancy on flow physics and heat transfer, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 67: 476–495.
  • El-Wahed, A. K., Johnson, M. W., and Sproston, J. L., 1993, Numerical study of vortex shedding from different shaped bluff bodies, Flow Measurement and Instrumentation 4: 233-240.
  • FLUENT 6.3.26 User’s Guide, Fluent Inc., Lebanon, NH, 2007.
  • GAMBIT 2.2 User’s Guide, Fluent Inc., Lebanon, NH, 2004.
  • Gandikota, G., Amiroudine, S., Chatterjee, D., and Biswas, G., 2010, The effect of aiding/opposing buoyancy on two dimensional laminar flow across a circular cylinder, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 58: 385-402.
  • Hassab, M. A., Teamah, M. A., El-Maghlany, W. M., and Kandil, M. A., 2013, Experimental study for a mixed convection heat transfer from an isothermal horizontal triangular cylinder, International Journal of Engineering Sciences 6: 210–225.
  • Hyun, S., and SikYoon, N. H., 2022, Effect of the wavy geometric disturbance on the flow over elliptic cylinders with different aspect ratios, Ocean Engineering 243: 110287.
  • Laidoudi, H. and Bouzi, M., 2018, The effects of aiding and opposing thermal buoyancy on the downward flow around a confined circular cylinder, Periodica Polytechnica Mechanical Engineering 62 (1): 42-50.
  • Lin, H. T., Yu, W. S., Chen, C. C., 1990, Comprehensive correlations for laminar mixed convection on vertical and horizontal flat plates, Wärme - und Stoffübertragung, 25, 353-359.
  • Lupi, F., 2013, A new aerodynamic phenomenon and its effects on the design of ultra-high cylindrical towers, Chapter 3. Flow around circular cylinders: state of the art, Ph.D. Thesis University of Florence. (https://flore.unifi.it/retrieve/handle/2158/829166/
  • Mahir, N. and Altaç, Z., 2019, Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in crossflow, International Journal of Heat and Fluid Flow 75: 103-121.
  • Patel, S. A. and Chhabra, R. P., 2019, Buoyancy-assisted flow of yield stress fluids past a cylinder: Effect of shape and channel confinement, Applied Mathematical Modelling 75: 892-915.
  • Peng, J., Fu, X. and Chen, Y., 2008, Experimental investigations of Strouhal number for flows past dual triangulate bluff bodies, Flow Measurement and Instrumentation 19: 350-357.
  • Rasool, T., Dhiman, A. and Parveez, M., 2015, Cross-buoyancy mixed convection around a confined triangular bluff body, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 67: 454–475.
  • Salimipour, E., and Yazdani, S., 2022, Study on the fluid flow and heat transfer characteristics of a horizontal elliptical cylinder under thermal buoyancy effect, International Journal of Heat and Mass Transfer 192: 122948.
  • Shademani, R., Ghadimi, P., Zamanian, R. and Dashtimanesh, A., 2013, Assessment of air flow over an equilateral triangular obstacle in a horizontal channel using FVM, Journal of Mathematical Sciences and Applications 1: 12-16.
  • Sharma, A., and Eswaran, V., 2005, Effect of channel-confinement and aiding/opposing buoyancy on the two-dimensional laminar flow and heat transfer across a square cylinder, International Journal of Heat and Mass Transfer 48 (25-26): 5310-5322.
  • Sharma, K. R. and Dutta, S., 2022, Flow over a square cylinder at intermediate Reynolds numbers, Journal of Fluids Engineering 144 (12): 121303.
  • Srigrarom, S. and Koh, A. K. G., 2008, Flow field of self-excited rotationally oscillating equilateral triangular cylinder, Journal of Fluids and Structures 24: 750-755.
  • Srikanth, S., Dhiman, A. K. and Bijjam, S., 2010, Confined flow and heat transfer across a triangular cylinder in a channel, International Journal of Thermal Sciences 49: 2191–2200.
  • Teixeira, F. B., Lorenzini, G., Errera, M. R., Rocha, L. A. O., Isoldi, L. A., and dos Santos, E. D., 2018, Constructal Design of triangular arrangements of square bluff bodies under forced convective turbulent flows, International Journal of Heat and Mass Transfer 126: 521-535.
  • Tiwari, A. K., and Chhabra, R. P., 2014, Effect of Orientation on the Steady Laminar Free Convection Heat Transfer in Power-Law Fluids from a Heated Triangular Cylinder, Numerical Heat Transfer, Part A: Applications 65 (8): 780-801.
  • Varma, N., Dulhani, J. P., Dalal, A., Sarkar, S., and Ganguly, S., 2015, Effect of channel confinement on mixed convective flow past an equilateral triangular cylinder, ASME Journal of Heat Transfer 121013: 1-7.
  • Yagmur, S., Dogan, S., Aksoy, M. H., Goktepeli, I., and Ozgoren, M., 2017, Comparison of flow characteristics around an equilateral triangular cylinder via PIV and Large Eddy Simulation methods, Flow Measurement and Instrumentation 55: 23-36.
  • Zeitoun, O., Ali, M., and Nuhait, A., 2010, Numerical study of forced convection around heated horizontal triangular ducts, Heat Transfer 68: 201-212.
  • Zeitoun, O., Ali, M., and Nuhait, A., 2011, Convective heat transfer around a triangular cylinder in an air cross flow, International Journal of Thermal Sciences 50 (9): 1685-1697.
  • Zhang, N., Rong, L. W., Dong, K. J., and Zeng, Q. D., 2020, Fluid flow and heat transfer characteristics over a superelliptic cylinder at incidence, Powder Technology 360: 193-208.
  • Zhu, H., Tang, T., Zhou, T., Liu, H., and Zhong. J., 2020, Flow structures around trapezoidal cylinders and their hydrodynamic characteristics: Effects of the base length ratio and attack angle, Physics of Fluids 32: 1036061-22.

TEK ÜÇGEN SİLİNDİRDEN TÜMLEŞİK ZORLANMIŞ VE DOĞAL TAŞINIM

Year 2024, Volume: 44 Issue: 1, 71 - 88, 03.06.2024
https://doi.org/10.47480/isibted.1494043

Abstract

Eşkenar üçgen silindir etrafında kararsız laminer sınırlı/sınırsız akışkan akışı ve tümleşik (doğal ve zorlanmış) taşınımla ısı transferi sayısal olarak incelenmiştir. Sayısal model, BR=0.5, 0.25, 0.2, 0.1, 0.05 ve 0.0333 blokaj oranlarına ve Reynolds sayılarının 100 ile 200 arasında değiştiği iki boyutlu bir alandır. Çalışma akışkanı sudur (Pr=7). Termal kaldırma kuvvetininin destek olma ve buna karşı çıkma etkileri, Boussinesq yaklaşımı kullanılarak Navier-Stokes denklemlerine dahil edilmiştir. Doğal taşınımın göreceli bir ölçüsü olan Richardson sayısı 2≥Ri≥-2 aralığında değişmiştir. Yönetici denklemler, taşınım terimlerinin ayrıklaştırılması için second order upwind şeması ile Sonlu Hacim Yöntemi kullanılarak çözülmüş ve hız-basınç bağlantısı için SIMPLE algoritması kullanılmıştır. Blokaj oranının ortalama sürükleme katsayısı, ortalama rms kaldırma katsayısı, Strouhal sayısı ve ortalama Nusselt sayısı üzerindeki etkisine ilişkin elde edilen sonuçlar çalışmada sunulmuştur. Eş girdap ve boyutsuz eş sıcaklık eğrileri altta yatan fiziksel mekanizmaları yorumlamak ve anlamak için oluşturulmuştur. Sonuçlar Richardson ve Reynolds sayılarına ek olarak blokaj oranının kanalda girdap dağılımında etkili olduğunu ortaya koymaktadır. Azalan blokaj oranı ile silindir arkasında oluşan girdapların kanala yayıldığı tespit edilmiştir. Özellikle yüksek Reynolds sayılarında hem sürükleme katsayısı hem de ortalama Nusselt sayısı blokaj oranından önemli ölçüde etkilendiği görülmüştür. Ri=0’da BR=0.25 için sürükleme katsayısı BR=0.05 durumuyla karşılaştırıldığında Re=100 ve 200’de sırasıyla yaklaşık %9 ve %29 daha yüksek çıkmıştır. BR<0.1 için Ri=0 ve -2’ye kıyasla termal kuvveti destekleyici durumda (Ri=2) kanal arkası çift girdap oluşumu yerini tekli girdaplara bırakmıştır. Ayrıca akış özellikleri ve ısı transferi için faydalı korelasyonlar, elde edilen veriler kullanılarak türetilmiştir.

References

  • Abbassi, H., Turki, S., and Nasrallah, S. B., 2001, Mixed convection in a plane channel with a built-in triangular prism, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 39: 307–320.
  • Akbari, M., Lavasani, A. M. and Naseri, A., 2021, Experimental investigation of the heat transfer for non-circular tubes in a turbulent air cross flow, Experimental Heat Transfer 34 (6): 531-530.
  • Altaç Z. and Altun, Ö., 2014, Hydrodynamically and thermally developing laminar flow in spiral coil tubes, International Journal of Thermal Sciences 77: 96-107.
  • Altaç, Z., Sert Z., Mahir, N., and Timuralp, Ç., 2019, Mixed convection heat transfer from a triangular cylinder subjected to upward cross flow, International Journal of Thermal Sciences 137: 75-85.
  • Ali, M., Zeitoun, O., and Nuhait, A., 2011, Forced convection heat transfer over horizontal triangular cylinder in cross flow, International Journal of Thermal Sciences 50: 106–114.
  • Arif, M. R. and Hasan, N., 2020, Large-scale heating effects on global parameters for flow past a square cylinder at different cylinder inclinations, International Journal of Heat and Mass Transfer 161: 120237.
  • Barati, E., Biabani, M. and Zarkak, M. R., 2022, Numerical investigation on vortex-induced vibration energy harvesting of a heated circular cylinder with various cross-sections. International Communications in Heat and Mass Transfer 132: 105888.
  • Bergman, T. L., Lavine, A. S. and Incropera, F. P., and DeWitt, D. P., 2018, Fundamentals of Heat and Mass Transfer, Wiley (WileyPLUS Products); 8th edition, Table 7.7, page 447.)
  • Bovand, M., Rashidi, S., Esfahani, J.A., 2015, Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle, Energy Conversion and Management 97: 212-223. Camarri, S., Salvetti, M. V., and Buresti, G., 2006, Large-eddy simulation of the flow around a triangular prism with moderate aspect ratio, Journal of Wind Engineering and Industrial Aerodynamics 94: 309-322.
  • Chatterjee, D., and Mondal, B., 2015, Mixed convection heat transfer from an equilateral triangular cylinder in cross flow at low Reynolds numbers, Heat Transfer Engineering 36 (1): 123–133.
  • Chattopadhyay, H., 2007, Augmentation of heat transfer in a channel using a triangular prism, International Journal of Thermal Sciences 46: 501-505.
  • Chen T. S., Armaly, B. F., Ramachandran, N., Correlations for laminar mixed convection flows on vertical, inclined, and horizontal flat plates, Journal of Heat Transfer, 108, 835-840.
  • Çelik, Z., Altaç, Z., 2023, Numerical investigation of two-dimensional unsteady flow and heat transfer from rounded equilateral isothermal triangular cylinders in cross flow, Ocean Engineering 269: 113468.
  • Dalal, A., Eswaran, V., and Biswas, G., 2008, A finite-volume method for Navier-Stokes equations on unstructured meshes, Numerical Heat Transfer, Part B: Fundamentals 54 (3): 238–259.
  • Dalkilic, A. S., Çebi, A., Celen, A., 2019, Numerical analyses on the prediction of Nusselt numbers for upward and downward flows of water in a smooth pipe: effects of buoyancy and property variations, Journal of Thermal Engineering, 5 (3): 166-180.
  • De, A. K., and Dalal, A., 2006, Numerical simulation of unconfined flow past a triangular cylinder, International Journal for Numerical Methods in Fluids 52 (7): 801–821.
  • De, A. K., and Dalal, A., 2007, Numerical study of laminar forced convection fluid flow and heat transfer from a triangular cylinder placed in a channel, ASME Journal of Heat Transfer 129: 646–656.
  • Dhimana, A., and Shyam, R., 2011, Unsteady heat transfer from an equilateral triangular cylinder in the unconfined flow regime, ISRN Mechanical Engineering 932738: 1–13.
  • Dhiman, A. K., 2016, Flow and heat transfer phenomena around an equilateral triangular bluff body: effect of wall confinement, Heat Transfer - Asian Research 45: 608–630.
  • Dulhani, J. P., and Dalal, A., 2015, Flow past an equilateral triangular bluff obstacle: computational study of the effect of thermal buoyancy on flow physics and heat transfer, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 67: 476–495.
  • El-Wahed, A. K., Johnson, M. W., and Sproston, J. L., 1993, Numerical study of vortex shedding from different shaped bluff bodies, Flow Measurement and Instrumentation 4: 233-240.
  • FLUENT 6.3.26 User’s Guide, Fluent Inc., Lebanon, NH, 2007.
  • GAMBIT 2.2 User’s Guide, Fluent Inc., Lebanon, NH, 2004.
  • Gandikota, G., Amiroudine, S., Chatterjee, D., and Biswas, G., 2010, The effect of aiding/opposing buoyancy on two dimensional laminar flow across a circular cylinder, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 58: 385-402.
  • Hassab, M. A., Teamah, M. A., El-Maghlany, W. M., and Kandil, M. A., 2013, Experimental study for a mixed convection heat transfer from an isothermal horizontal triangular cylinder, International Journal of Engineering Sciences 6: 210–225.
  • Hyun, S., and SikYoon, N. H., 2022, Effect of the wavy geometric disturbance on the flow over elliptic cylinders with different aspect ratios, Ocean Engineering 243: 110287.
  • Laidoudi, H. and Bouzi, M., 2018, The effects of aiding and opposing thermal buoyancy on the downward flow around a confined circular cylinder, Periodica Polytechnica Mechanical Engineering 62 (1): 42-50.
  • Lin, H. T., Yu, W. S., Chen, C. C., 1990, Comprehensive correlations for laminar mixed convection on vertical and horizontal flat plates, Wärme - und Stoffübertragung, 25, 353-359.
  • Lupi, F., 2013, A new aerodynamic phenomenon and its effects on the design of ultra-high cylindrical towers, Chapter 3. Flow around circular cylinders: state of the art, Ph.D. Thesis University of Florence. (https://flore.unifi.it/retrieve/handle/2158/829166/
  • Mahir, N. and Altaç, Z., 2019, Numerical investigation of flow and combined natural-forced convection from an isothermal square cylinder in crossflow, International Journal of Heat and Fluid Flow 75: 103-121.
  • Patel, S. A. and Chhabra, R. P., 2019, Buoyancy-assisted flow of yield stress fluids past a cylinder: Effect of shape and channel confinement, Applied Mathematical Modelling 75: 892-915.
  • Peng, J., Fu, X. and Chen, Y., 2008, Experimental investigations of Strouhal number for flows past dual triangulate bluff bodies, Flow Measurement and Instrumentation 19: 350-357.
  • Rasool, T., Dhiman, A. and Parveez, M., 2015, Cross-buoyancy mixed convection around a confined triangular bluff body, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology 67: 454–475.
  • Salimipour, E., and Yazdani, S., 2022, Study on the fluid flow and heat transfer characteristics of a horizontal elliptical cylinder under thermal buoyancy effect, International Journal of Heat and Mass Transfer 192: 122948.
  • Shademani, R., Ghadimi, P., Zamanian, R. and Dashtimanesh, A., 2013, Assessment of air flow over an equilateral triangular obstacle in a horizontal channel using FVM, Journal of Mathematical Sciences and Applications 1: 12-16.
  • Sharma, A., and Eswaran, V., 2005, Effect of channel-confinement and aiding/opposing buoyancy on the two-dimensional laminar flow and heat transfer across a square cylinder, International Journal of Heat and Mass Transfer 48 (25-26): 5310-5322.
  • Sharma, K. R. and Dutta, S., 2022, Flow over a square cylinder at intermediate Reynolds numbers, Journal of Fluids Engineering 144 (12): 121303.
  • Srigrarom, S. and Koh, A. K. G., 2008, Flow field of self-excited rotationally oscillating equilateral triangular cylinder, Journal of Fluids and Structures 24: 750-755.
  • Srikanth, S., Dhiman, A. K. and Bijjam, S., 2010, Confined flow and heat transfer across a triangular cylinder in a channel, International Journal of Thermal Sciences 49: 2191–2200.
  • Teixeira, F. B., Lorenzini, G., Errera, M. R., Rocha, L. A. O., Isoldi, L. A., and dos Santos, E. D., 2018, Constructal Design of triangular arrangements of square bluff bodies under forced convective turbulent flows, International Journal of Heat and Mass Transfer 126: 521-535.
  • Tiwari, A. K., and Chhabra, R. P., 2014, Effect of Orientation on the Steady Laminar Free Convection Heat Transfer in Power-Law Fluids from a Heated Triangular Cylinder, Numerical Heat Transfer, Part A: Applications 65 (8): 780-801.
  • Varma, N., Dulhani, J. P., Dalal, A., Sarkar, S., and Ganguly, S., 2015, Effect of channel confinement on mixed convective flow past an equilateral triangular cylinder, ASME Journal of Heat Transfer 121013: 1-7.
  • Yagmur, S., Dogan, S., Aksoy, M. H., Goktepeli, I., and Ozgoren, M., 2017, Comparison of flow characteristics around an equilateral triangular cylinder via PIV and Large Eddy Simulation methods, Flow Measurement and Instrumentation 55: 23-36.
  • Zeitoun, O., Ali, M., and Nuhait, A., 2010, Numerical study of forced convection around heated horizontal triangular ducts, Heat Transfer 68: 201-212.
  • Zeitoun, O., Ali, M., and Nuhait, A., 2011, Convective heat transfer around a triangular cylinder in an air cross flow, International Journal of Thermal Sciences 50 (9): 1685-1697.
  • Zhang, N., Rong, L. W., Dong, K. J., and Zeng, Q. D., 2020, Fluid flow and heat transfer characteristics over a superelliptic cylinder at incidence, Powder Technology 360: 193-208.
  • Zhu, H., Tang, T., Zhou, T., Liu, H., and Zhong. J., 2020, Flow structures around trapezoidal cylinders and their hydrodynamic characteristics: Effects of the base length ratio and attack angle, Physics of Fluids 32: 1036061-22.
There are 47 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Article
Authors

Zerrin Sert 0000-0001-6934-5443

Publication Date June 3, 2024
Published in Issue Year 2024 Volume: 44 Issue: 1

Cite

APA Sert, Z. (2024). COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER. Isı Bilimi Ve Tekniği Dergisi, 44(1), 71-88. https://doi.org/10.47480/isibted.1494043
AMA Sert Z. COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER. Isı Bilimi ve Tekniği Dergisi. June 2024;44(1):71-88. doi:10.47480/isibted.1494043
Chicago Sert, Zerrin. “COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER”. Isı Bilimi Ve Tekniği Dergisi 44, no. 1 (June 2024): 71-88. https://doi.org/10.47480/isibted.1494043.
EndNote Sert Z (June 1, 2024) COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER. Isı Bilimi ve Tekniği Dergisi 44 1 71–88.
IEEE Z. Sert, “COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER”, Isı Bilimi ve Tekniği Dergisi, vol. 44, no. 1, pp. 71–88, 2024, doi: 10.47480/isibted.1494043.
ISNAD Sert, Zerrin. “COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER”. Isı Bilimi ve Tekniği Dergisi 44/1 (June 2024), 71-88. https://doi.org/10.47480/isibted.1494043.
JAMA Sert Z. COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER. Isı Bilimi ve Tekniği Dergisi. 2024;44:71–88.
MLA Sert, Zerrin. “COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER”. Isı Bilimi Ve Tekniği Dergisi, vol. 44, no. 1, 2024, pp. 71-88, doi:10.47480/isibted.1494043.
Vancouver Sert Z. COMBINED FORCED AND NATURAL CONVECTION FROM A SINGLE TRIANGULAR CYLINDER. Isı Bilimi ve Tekniği Dergisi. 2024;44(1):71-88.