Research Article
BibTex RIS Cite

ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION

Year 2024, Volume: 44 Issue: 1, 143 - 162, 03.06.2024
https://doi.org/10.47480/isibted.1494403

Abstract

The overall performance of PV-PCM integrated with rectangular straight fins is analysed by three-dimensional transient numerical simulations. The influence of fin lengths, number of fins (n), and inclination (θ) of the system is investigated and compared with the PV-only system, and an optimal system configuration is then identified. Finite element analysis is used to conduct the simulations using COMSOL Multiphysics 6.0. The PV front surface is subjected to a constant flux of 1000 W/m2 for 180 min, and the PCM employed is RT25HC. The results indicate that the average PV temperature tends to drop with increasing inclination and fin length, thereby enhancing the PV efficiency, with maximum improvement attained for the full fin case for a given inclination and number of fins. Compared to the PV-only system, the highest PV temperature reduction and PV efficiency enhancement are 59.65 °C and 45.1%, respectively, for the horizontal system of full-length fins with a number of fins equal to 6. The full-fin PV-PCM system with 6 fins and 45° inclination gives the highest instantaneous power output of 14.16 W. The melting rate of PCM is strongly related to the heat transfer rate inside PCM, and the lowest melting time is obtained for the 8-finned PV-PCM system with θ = 45°. The peak velocity magnitude for all systems with different fin lengths is also examined to analyse the extent of convection levels within PCM.

References

  • Abdulmunem, A.R., Mohd Samin, P., Abdul Rahman, H., Hussien, H.A., Izmi Mazali, I., Ghazali, H., 2021, Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink, Renew. Energy, 173, 520–530.
  • Agrawal, B., Tiwari, G.N., 2010, Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions, Appl. Energy, 87, 417–426.
  • Akshayveer, Kumar, A., Pratap Singh, A., Sreeram Kotha, R., Singh, O.P., 2021, Thermal energy storage design of a new bifacial PV/PCM system for enhanced thermo-electric performance. Energy Convers. Management, 250, 114912.
  • Ali, H.M., 2020, Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review, Sol. Energy, 197, 163–198.
  • Azarpour, A., Suhaimi, S., Zahedi, G., Bahadori, A., 2013, A review on the drawbacks of renewable energy as a promising energy source of the future. Arab. J. Sci. Eng, 38, 317–328.
  • Balavinayagam, K., K S, U., Rohinikumar, B., 2021, Numerical investigations on phase change material-based battery thermal management system. J. Phys. Conf. Ser, 2054, 012003.
  • Bilen, K., Erdoğan, İ., 2023, Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Sol. Energy, 262, 111829.
  • Biwole, P.H., Groulx, D., Souayfane, F., Chiu, T., 2018. Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure, Int. J. Therm. Sci., 124, 433–446.
  • Brent, A.D., Voller, V.R., Reid, K.J., 1988, Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal, Numer. Heat Transf., 13, 297–318.
  • Bria, A., Raillani, B., Chaatouf, D., Salhi, M., Amraqui, S., Mezrhab, A., 2023, Effect of PCM thickness on the performance of the finned PV/PCM system, Mater. Today Proc., 72, 3617–3625.
  • Chibani, A., Merouani, S., Laidoudi, H., Dehane, A., Morakchi, M.R., Bendada, L., 2023, Analysis and optimization of concentrator photovoltaic system using a phase change material (RT 35HC) combined with variable metal fins, J. Energy Storage, 72.
  • Cuce, E., Bali, T., Sekucoglu, S.A., 2011, Effects of passive cooling on performance of silicon photovoltaic cells, Int. J. Low-Carbon Technol., 6, 299–308.
  • Cuce, E., Cuce, P.M., 2014, Tilt Angle Optimization and Passive Cooling of Building-Integrated Photovoltaics (BIPVs) for Better Electrical Performance, Arab. J. Sci. Eng., 39, 8199–8207.
  • Da, J., Li, M., Li, G., Wang, Y., Zhang, Y., 2023, Simulation and experiment of a photovoltaic—air source heat pump system with thermal energy storage for heating and domestic hot water supply, Build. Simul.
  • Duan, J., 2021, The PCM-porous system used to cool the inclined PV panel, Renew. Energy, 180, 1315–1332.
  • Dubey, S., Sarvaiya, J.N., Seshadri, B., 2013, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review, Energy Procedia, 33, 311–321.
  • Emam, M., Ahmed, M., 2018, Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks, Energy Convers. Manag., 158, 298–314.
  • Fujii, T., Imura, H., 1972, Natural-convection heat transfer from a plate with arbitrary inclination, Int. J. Heat Mass Transf., 15, 755–767.
  • Groulx, D., Biwole, P.H., Bhouri, M., 2020, Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement, Int. J. Therm. Sci., 151, 106260.
  • Huang, M.J., Eames, P.C., Norton, B., Hewitt, N.J., 2011, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics, Sol. Energy Mater. Sol. Cells, 95, 1598–1603.
  • Hui Dai, Wei-Min Ma, 2002, A novelty Bayesian method for unsupervised learning of finite mixture models, in: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826). IEEE, pp. 3574–3578.
  • Incropera, F., Dewitt, D., 1985, Introduction to heat transfer, John Wiley and Sons Inc, United States.
  • Johnston, E., Szabo, P.S.B., Bennett, N.S., 2021, Cooling silicon photovoltaic cells using finned heat sinks and the effect of inclination angle, Therm. Sci. Eng. Prog., 23, 100902.
  • Kaldellis, J.K., Kapsali, M., Kavadias, K.A., 2014, Temperature and wind speed impact on the efficiency of PV installations, Experience obtained from outdoor measurements in Greece, Renew. Energy, 66, 612–624.
  • Kant, K., Shukla, A., Sharma, A., Biwole, P.H., 2016, Heat transfer studies of photovoltaic panel coupled with phase change material, Sol. Energy, 140, 151–161.
  • Kaplani, E., Kaplanis, S., 2014, Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination, Sol. Energy, 107, 443–460.
  • Kazem, H.A., Al-Waeli, A.H.A., Chaichan, M.T., Sopian, K., Ahmed, A.A., Wan Nor Roslam, W.I., 2023, Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review, Case Stud. Therm., Eng. 49, 103316.
  • Khanna, S., Newar, S., Sharma, V., Reddy, K.S., Mallick, T.K., 2019, Optimization of fins fitted phase change material equipped solar photovoltaic under various working circumstances, Energy Convers. Manag., 180, 1185–1195.
  • Khanna, S., Reddy, K.S., Mallick, T.K., 2018, Optimization of finned solar photovoltaic phase change material (finned pv pcm) system, Int. J. Therm. Sci., 130, 313–322.
  • Khanna, S., Reddy, K.S., Mallick, T.K., 2017, Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions, Energy, 133, 887–899.
  • Klemm, T., Hassabou, A., Abdallah, A., Andersen, O., 2017, Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules, Energy Procedia, 135, 193–202.
  • Kumar, K.S., Kumar, H.A., Gowtham, P., Kumar, S.H.S., Sudhan, R.H., 2020, Experimental analysis and increasing the energy efficiency of PV cell with nano-PCM (calcium carbonate, silicon carbide, copper), Mater. Today Proc., 37, 1221–1225.
  • Mahdi, J.M., Mohammed, H.I., Talebizadehsardari, P., 2021, A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules, Sol. Energy, 222, 160–174. Metwally, H., Mahmoud, N.A., Ezzat, M., Aboelsoud, W., 2021, Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material, J. Energy Storage, 42, 103031.
  • Mohanraj, M., Gunasekar, N., Velmurugan, V., 2016, Comparison of energy performance of heat pumps using a photovoltaic – thermal evaporator with circular and triangular tube configurations, Building Simulations, 9, 27–41.
  • Nouira, M., Sammouda, H., 2018, Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions, Appl. Therm. Eng., 141, 958–975.
  • Park, J., Kim, T., Leigh, S.B., 2014, Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions, Sol. Energy, 105, 561–574.
  • Poirier, D.R., 1987, Permeability for flow of interdendritic liquid in columnar-dendritic alloys, Metall. Trans. B., 18, 245–255.
  • Sasidharan, U.K., Bandaru, R., 2022, Thermal management of photovoltaic panel with nano-enhanced phase change material at different inclinations, Environ. Sci. Pollut. Res., 29, 34759–34775.
  • Savvakis, N., Dialyna, E., Tsoutsos, T., 2020, Investigation of the operational performance and efficiency of an alternative PV + PCM concept, Sol. Energy, 211, 1283–1300.
  • Sharma, S., Tahir, A., Reddy, K.S., Mallick, T.K., 2016, Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material, Sol. Energy Mater. Sol. Cells, 149, 29–39.
  • Singh, P., Khanna, S., Becerra, V., Newar, S., Sharma, V., Mallick, T.K., Hutchinson, D., Radulovic, J., Khusainov, R., 2020, Power improvement of finned solar photovoltaic phase change material system, Energy, 193, 116735.
  • Unnikrishnan, Jayatej, M., B, R., 2023, Three-dimensional numerical analysis of performance of PV module integrated with PCM and internal pin fins of different shapes, J. Therm. Anal. Calorim., 148, 9739–9760.
  • Variji, N., Siavashi, M., Tahmasbi, M., Bidabadi, M., 2022, Analysis of the effects of porous media parameters and inclination angle on the thermal storage and efficiency improvement of a photovoltaic-phase change material system, J. Energy Storage, 50, 104690.
  • Yıldız, Ç., Arıcı, M., Nižetić, S., Shahsavar, A., 2020, Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins, Energy, 207.

ÜÇ BOYUTLU GEÇİCİ SAYISAL SİMÜLASYON İLE KANATLI PCM İLE ENTEGRE PV MODÜLÜN PERFORMANSINDAKİ ARTIŞIN ANALİZİ

Year 2024, Volume: 44 Issue: 1, 143 - 162, 03.06.2024
https://doi.org/10.47480/isibted.1494403

Abstract

Dikdörtgen düz kanatlarla entegre edilmiş PV-PCM'nin genel performansı, üç boyutlu geçici sayısal simülasyonlarla analiz edilir. Sistemin kanat uzunluklarının, kanat sayısının (n) ve eğiminin (θ) etkisi araştırılır ve yalnızca PV sistemiyle karşılaştırılır ve daha sonra optimum sistem konfigürasyonu tanımlanır. Simülasyonları COMSOL Multiphysics 6.0 kullanarak gerçekleştirmek için sonlu elemanlar analizi kullanıldı. PV'nin ön yüzeyi 180 dakika boyunca 1000 W/m2 'lik sabit bir akışa maruz bırakılır ve kullanılan PCM, RT25HC'dir. Sonuçlar, ortalama PV sıcaklığının artan eğim ve kanat uzunluğuyla birlikte düşme eğiliminde olduğunu, dolayısıyla PV verimliliğinin arttığını ve belirli bir eğim ve kanat sayısı için tam kanat durumunda maksimum iyileştirmenin elde edildiğini göstermektedir. Yalnızca PV sistemiyle karşılaştırıldığında, kanat sayısı 6'ya eşit olan tam uzunlukta kanatlardan oluşan yatay sistem için en yüksek PV sıcaklık düşüşü ve PV verimlilik artışı sırasıyla 59,65 °C ve %45,1'dir. -6 kanatlı ve 45° eğimli PCM sistemi, 14,16 W ile en yüksek anlık güç çıkışını verir. PCM'nin erime hızı, PCM içindeki ısı aktarım hızıyla güçlü bir şekilde ilişkilidir ve en düşük erime süresi, 8 kanatlı PV- için elde edilir. θ = 45° olan PCM sistemi. Farklı kanat uzunluklarına sahip tüm sistemler için tepe hız büyüklüğü de PCM içindeki konveksiyon seviyelerinin kapsamını analiz etmek için incelenir.

References

  • Abdulmunem, A.R., Mohd Samin, P., Abdul Rahman, H., Hussien, H.A., Izmi Mazali, I., Ghazali, H., 2021, Numerical and experimental analysis of the tilt angle’s effects on the characteristics of the melting process of PCM-based as PV cell’s backside heat sink, Renew. Energy, 173, 520–530.
  • Agrawal, B., Tiwari, G.N., 2010, Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions, Appl. Energy, 87, 417–426.
  • Akshayveer, Kumar, A., Pratap Singh, A., Sreeram Kotha, R., Singh, O.P., 2021, Thermal energy storage design of a new bifacial PV/PCM system for enhanced thermo-electric performance. Energy Convers. Management, 250, 114912.
  • Ali, H.M., 2020, Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems – A comprehensive review, Sol. Energy, 197, 163–198.
  • Azarpour, A., Suhaimi, S., Zahedi, G., Bahadori, A., 2013, A review on the drawbacks of renewable energy as a promising energy source of the future. Arab. J. Sci. Eng, 38, 317–328.
  • Balavinayagam, K., K S, U., Rohinikumar, B., 2021, Numerical investigations on phase change material-based battery thermal management system. J. Phys. Conf. Ser, 2054, 012003.
  • Bilen, K., Erdoğan, İ., 2023, Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Sol. Energy, 262, 111829.
  • Biwole, P.H., Groulx, D., Souayfane, F., Chiu, T., 2018. Influence of fin size and distribution on solid-liquid phase change in a rectangular enclosure, Int. J. Therm. Sci., 124, 433–446.
  • Brent, A.D., Voller, V.R., Reid, K.J., 1988, Enthalpy-porosity technique for modeling convection-diffusion phase change: Application to the melting of a pure metal, Numer. Heat Transf., 13, 297–318.
  • Bria, A., Raillani, B., Chaatouf, D., Salhi, M., Amraqui, S., Mezrhab, A., 2023, Effect of PCM thickness on the performance of the finned PV/PCM system, Mater. Today Proc., 72, 3617–3625.
  • Chibani, A., Merouani, S., Laidoudi, H., Dehane, A., Morakchi, M.R., Bendada, L., 2023, Analysis and optimization of concentrator photovoltaic system using a phase change material (RT 35HC) combined with variable metal fins, J. Energy Storage, 72.
  • Cuce, E., Bali, T., Sekucoglu, S.A., 2011, Effects of passive cooling on performance of silicon photovoltaic cells, Int. J. Low-Carbon Technol., 6, 299–308.
  • Cuce, E., Cuce, P.M., 2014, Tilt Angle Optimization and Passive Cooling of Building-Integrated Photovoltaics (BIPVs) for Better Electrical Performance, Arab. J. Sci. Eng., 39, 8199–8207.
  • Da, J., Li, M., Li, G., Wang, Y., Zhang, Y., 2023, Simulation and experiment of a photovoltaic—air source heat pump system with thermal energy storage for heating and domestic hot water supply, Build. Simul.
  • Duan, J., 2021, The PCM-porous system used to cool the inclined PV panel, Renew. Energy, 180, 1315–1332.
  • Dubey, S., Sarvaiya, J.N., Seshadri, B., 2013, Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review, Energy Procedia, 33, 311–321.
  • Emam, M., Ahmed, M., 2018, Cooling concentrator photovoltaic systems using various configurations of phase-change material heat sinks, Energy Convers. Manag., 158, 298–314.
  • Fujii, T., Imura, H., 1972, Natural-convection heat transfer from a plate with arbitrary inclination, Int. J. Heat Mass Transf., 15, 755–767.
  • Groulx, D., Biwole, P.H., Bhouri, M., 2020, Phase change heat transfer in a rectangular enclosure as a function of inclination and fin placement, Int. J. Therm. Sci., 151, 106260.
  • Huang, M.J., Eames, P.C., Norton, B., Hewitt, N.J., 2011, Natural convection in an internally finned phase change material heat sink for the thermal management of photovoltaics, Sol. Energy Mater. Sol. Cells, 95, 1598–1603.
  • Hui Dai, Wei-Min Ma, 2002, A novelty Bayesian method for unsupervised learning of finite mixture models, in: Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826). IEEE, pp. 3574–3578.
  • Incropera, F., Dewitt, D., 1985, Introduction to heat transfer, John Wiley and Sons Inc, United States.
  • Johnston, E., Szabo, P.S.B., Bennett, N.S., 2021, Cooling silicon photovoltaic cells using finned heat sinks and the effect of inclination angle, Therm. Sci. Eng. Prog., 23, 100902.
  • Kaldellis, J.K., Kapsali, M., Kavadias, K.A., 2014, Temperature and wind speed impact on the efficiency of PV installations, Experience obtained from outdoor measurements in Greece, Renew. Energy, 66, 612–624.
  • Kant, K., Shukla, A., Sharma, A., Biwole, P.H., 2016, Heat transfer studies of photovoltaic panel coupled with phase change material, Sol. Energy, 140, 151–161.
  • Kaplani, E., Kaplanis, S., 2014, Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination, Sol. Energy, 107, 443–460.
  • Kazem, H.A., Al-Waeli, A.H.A., Chaichan, M.T., Sopian, K., Ahmed, A.A., Wan Nor Roslam, W.I., 2023, Enhancement of photovoltaic module performance using passive cooling (Fins): A comprehensive review, Case Stud. Therm., Eng. 49, 103316.
  • Khanna, S., Newar, S., Sharma, V., Reddy, K.S., Mallick, T.K., 2019, Optimization of fins fitted phase change material equipped solar photovoltaic under various working circumstances, Energy Convers. Manag., 180, 1185–1195.
  • Khanna, S., Reddy, K.S., Mallick, T.K., 2018, Optimization of finned solar photovoltaic phase change material (finned pv pcm) system, Int. J. Therm. Sci., 130, 313–322.
  • Khanna, S., Reddy, K.S., Mallick, T.K., 2017, Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions, Energy, 133, 887–899.
  • Klemm, T., Hassabou, A., Abdallah, A., Andersen, O., 2017, Thermal energy storage with phase change materials to increase the efficiency of solar photovoltaic modules, Energy Procedia, 135, 193–202.
  • Kumar, K.S., Kumar, H.A., Gowtham, P., Kumar, S.H.S., Sudhan, R.H., 2020, Experimental analysis and increasing the energy efficiency of PV cell with nano-PCM (calcium carbonate, silicon carbide, copper), Mater. Today Proc., 37, 1221–1225.
  • Mahdi, J.M., Mohammed, H.I., Talebizadehsardari, P., 2021, A new approach for employing multiple PCMs in the passive thermal management of photovoltaic modules, Sol. Energy, 222, 160–174. Metwally, H., Mahmoud, N.A., Ezzat, M., Aboelsoud, W., 2021, Numerical investigation of photovoltaic hybrid cooling system performance using the thermoelectric generator and RT25 Phase change material, J. Energy Storage, 42, 103031.
  • Mohanraj, M., Gunasekar, N., Velmurugan, V., 2016, Comparison of energy performance of heat pumps using a photovoltaic – thermal evaporator with circular and triangular tube configurations, Building Simulations, 9, 27–41.
  • Nouira, M., Sammouda, H., 2018, Numerical study of an inclined photovoltaic system coupled with phase change material under various operating conditions, Appl. Therm. Eng., 141, 958–975.
  • Park, J., Kim, T., Leigh, S.B., 2014, Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions, Sol. Energy, 105, 561–574.
  • Poirier, D.R., 1987, Permeability for flow of interdendritic liquid in columnar-dendritic alloys, Metall. Trans. B., 18, 245–255.
  • Sasidharan, U.K., Bandaru, R., 2022, Thermal management of photovoltaic panel with nano-enhanced phase change material at different inclinations, Environ. Sci. Pollut. Res., 29, 34759–34775.
  • Savvakis, N., Dialyna, E., Tsoutsos, T., 2020, Investigation of the operational performance and efficiency of an alternative PV + PCM concept, Sol. Energy, 211, 1283–1300.
  • Sharma, S., Tahir, A., Reddy, K.S., Mallick, T.K., 2016, Performance enhancement of a Building-Integrated Concentrating Photovoltaic system using phase change material, Sol. Energy Mater. Sol. Cells, 149, 29–39.
  • Singh, P., Khanna, S., Becerra, V., Newar, S., Sharma, V., Mallick, T.K., Hutchinson, D., Radulovic, J., Khusainov, R., 2020, Power improvement of finned solar photovoltaic phase change material system, Energy, 193, 116735.
  • Unnikrishnan, Jayatej, M., B, R., 2023, Three-dimensional numerical analysis of performance of PV module integrated with PCM and internal pin fins of different shapes, J. Therm. Anal. Calorim., 148, 9739–9760.
  • Variji, N., Siavashi, M., Tahmasbi, M., Bidabadi, M., 2022, Analysis of the effects of porous media parameters and inclination angle on the thermal storage and efficiency improvement of a photovoltaic-phase change material system, J. Energy Storage, 50, 104690.
  • Yıldız, Ç., Arıcı, M., Nižetić, S., Shahsavar, A., 2020, Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins, Energy, 207.
There are 44 citations in total.

Details

Primary Language English
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics)
Journal Section Research Article
Authors

Unnıkrıshnan K S 0000-0002-2231-5391

Sumanth Babu Pathipati This is me 0009-0002-3033-5349

Rohinikumar Bandaru This is me 0000-0002-3975-3996

Publication Date June 3, 2024
Published in Issue Year 2024 Volume: 44 Issue: 1

Cite

APA K S, U., Pathipati, S. B., & Bandaru, R. (2024). ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION. Isı Bilimi Ve Tekniği Dergisi, 44(1), 143-162. https://doi.org/10.47480/isibted.1494403
AMA K S U, Pathipati SB, Bandaru R. ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION. Isı Bilimi ve Tekniği Dergisi. June 2024;44(1):143-162. doi:10.47480/isibted.1494403
Chicago K S, Unnıkrıshnan, Sumanth Babu Pathipati, and Rohinikumar Bandaru. “ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION”. Isı Bilimi Ve Tekniği Dergisi 44, no. 1 (June 2024): 143-62. https://doi.org/10.47480/isibted.1494403.
EndNote K S U, Pathipati SB, Bandaru R (June 1, 2024) ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION. Isı Bilimi ve Tekniği Dergisi 44 1 143–162.
IEEE U. K S, S. B. Pathipati, and R. Bandaru, “ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION”, Isı Bilimi ve Tekniği Dergisi, vol. 44, no. 1, pp. 143–162, 2024, doi: 10.47480/isibted.1494403.
ISNAD K S, Unnıkrıshnan et al. “ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION”. Isı Bilimi ve Tekniği Dergisi 44/1 (June 2024), 143-162. https://doi.org/10.47480/isibted.1494403.
JAMA K S U, Pathipati SB, Bandaru R. ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION. Isı Bilimi ve Tekniği Dergisi. 2024;44:143–162.
MLA K S, Unnıkrıshnan et al. “ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION”. Isı Bilimi Ve Tekniği Dergisi, vol. 44, no. 1, 2024, pp. 143-62, doi:10.47480/isibted.1494403.
Vancouver K S U, Pathipati SB, Bandaru R. ANALYSIS OF AUGMENTATION IN PERFORMANCE OF PV MODULE INTEGRATED WITH FINNED PCM BY THREE-DIMENSIONAL TRANSIENT NUMERICAL SIMULATION. Isı Bilimi ve Tekniği Dergisi. 2024;44(1):143-62.